* X %

Future/D*

* 5 *

Integration of the Security Relevant

Modules into the FuturelD Client

WP 35 Trustworthy Client Platform

D 35.5

Date 15/10/2015

Status Final

Version | 1.0

Related SP / WP SP 3/ WP 35 Document Reference D. 355
Related Deliverable(s) D 35.2,D35.1,D 35.3 Dissemination Level Public

Lead Participant G&D Lead Author Dr. F.-M. Kamm
Contributors TUG, TUD Reviewers RU, DTU

This document is issued within the frame and for the purpose of the FuturelD project. This project has received funding from the

European Unions Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 318424

This document and its content are the property of the FuturelD Consortium. All rights relevant to this document are determined by
the applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or
its contents are not to be used or treated in any manner inconsistent with the rights or interests of the FuturelD Consortium or the
Partners detriment and are not to be disclosed externally without prior written consent from the FuturelD Partners.

Each FuturelD Partner may use this document in conformity with the FuturelD Consortium Grant Agreement provisions

Document name: | Insert Related SP/ WP

Page:

0of 24

Reference: | D355

Dissemination: | PU |Version:

1.0 Status:

Final

SEVENTH FRAMEWORK



Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

1. Abstract

This deliverable documents the integration of security enhancing components on the client platform into
the FuturelD client architecture. The additional security allows for a better protection of credentials,
especially those outside of secure elements, and an easier access over various transport channels like
NFC, USB or the SIM card. Supported by this infrastructure, mobile ID solutions as well as smartcard
based use cases are easier to roll out and to use.

The integration of the extended OpenMobile API with plugin-terminals allows establishing a single
communication channel to the Secure Elements. The implementation of the plugin-terminals has initially
been demonstrated with a PKI applet on a SIM card, a USB token, and a contactless card (NFC). This
demonstration however took place with a standalone app that integrates the extended OpenMobile API
as a JCE provider. To make this implementation usable for FuturelD it was necessary to integrate the API
into the FuturelD Android client. This has been achieved by implementing the SCIO API accordingly. For a
smooth integration of the PKI applet use case into the FuturelD client it was necessary to make a small
modification of the SEEK V3.2.1 implementation. In addition, a CardInfo file had to be generated that
describes the applet functionality. Since this is not a standard PKCS#15 type of data structure, significant
modifications had to be done on the automatically generated file. With this CardInfo file, the extended
OpenMobile APl and the integration into the FuturelD client IFD architecture it is now possible to
demonstrate the use of a PKl applet, as it can be found in many mobile ID applications. Details of this
implementation are described in chapter 5.

The integration of Trusted Execution Environments (TEEs) into the FuturelD client is described in chapter
6. Based on the ARM TrustZone the TEE can be used to store and manage confidential information, such
as certificates, and perform computations, such as signature creation, without exposing any security
relevant data. The ARM TrustZone provider architecture is based upon the Service Access Layer (SAL)
provider architecture presented in deliverable D32.5. For creating signatures and generating key pairs it
is necessary to interact with the TEE which is achieved by implementing a Java native interface (JNI)
wrapper. In order to demonstrate the use of a TEE, a prototypical GUI was implemented. The FuturelD
client allows for creating signatures, generating key pairs and the corresponding Certificate Sign Request
(CSR), and importing certificates into the TEE.

In another scenario, the use of the Android Security Modules (ASM) framework was proposed to enforce
access control on Android. Since a full integration of the ASM framework is beyond the scope of
FuturelD, this document will elaborate scenarios of how the ASM framework can be utilized for FuturelD.
One of the proposed integration scenarios is that the ASM framework, using the hooks to the file system,
restricts the access to the software credentials so that only the FuturelD client is able to access to this
file. Another proposed integration scenario is to protect the access to the secure element using the
Android Security Modules framework. In this scenario the NFC plugin-terminal is used to provide the
FuturelD client with an access to a contactless smartcard. In order to secure this access the ASM
framework is used to give the user the choice on whereas to allow the access or deny it. The integration

Document name: | SP 3/ WP 35 Page: lof24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

scenarios are discussed in chapter 7, while chapter 8 provides conclusions and an outlook beyond the
FuturelD project.

Document name: | SP 3/ WP 35 Page: 20f 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity

Integration of the Securitx Relevant Modules into the FuturelD Client

2. Document Information
2.1 Contributors
Name Partner
F.-M. Kamm G&D
David Derler TUG
Christof Rath TUG
Jon Rios TUD
2.2 History
Version Date Author Changes
0.1 10.09.2015 F.-M. Kamm Initial version
0.2 14.09.2015 F.-M. Kamm Chapter 5 added
0.3 15.09.2015 F.-M. Kamm Chapter 5 updated
0.4 24.09.2015 Wolfgang Schoechl Chapter 6 added
0.5 06.10.2015 F.-M. Kamm Citations added
0.6 09.10.2015 J. Rios Chapter 7 added
0.9 12.10.2015 F.-M. Kamm Chapter 1,8 added,
internal reviewer
version finalized
1.0 15.10.2015 F.-M. Kamm Reviewer comments
integrated
Document name: | SP 3/ WP 35 Page: 3of24
Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity

Integration of the Securitx Relevant Modules into the FuturelD Client

3. Table of Contents

1. Abstract 1
2.  Document Information 3
00 R o 1 11 ] 11 (o £ 3
A |1 (o ] Y/ 3
3. Table of Contents 4
4. Project Description 5
5. Integration of OpenMobile API and Plugin-Terminals 6
5.1 Integration into IFD ArChItECIUIE ... ...t i e e e e eeees 6
5.2  IFD/OpenMobile API INTEQIatioN..........euiiiiiiiiiiiiiieie e 8
5.3  CardInfo File for PKI APPIET....ccoii et 9
6. Integration of ARM TrustZone-based eSign Modules 14
6.1  ARM TrUSEZONE PrOVIOEI ....eiiiiieiiiiiiiiet ettt ettt e e e e e e s et e e e e e e e e annnnes 14
6.2  Java Native Interface (INI) WIAPPET ......cooiiiiiiiiiiiiiiee ettt 15
6.2.1 JINI Wrapper Method DeSCIPLION ........cceiiiiiiiii e ee e e e e e e e e e e e e e eennees 15
6.3 Integration into the FULUrelID CHENT ..........cooiiiiiiiiiiiie e 16
IR 0 R [0 | TP P PP P PP PPPPPPRPPPP 17
6.3.2 GENEIALE KEBY Pl ...uuuiiiiiiiiiiiiiiiiiiiiiiiiiiii s ea e s e e e e a e e e e e e aas 17
6.3.3  IMPOIT CeIIfICAIE ... it e e e e e e e e e e e e nnes 19
8.4 REIMAIKS ..uuiiiiiiiiiiiiiiiiiiii i n e 19
7. Integration Scenarios for Mandatory Access Control 20
7.1  Protecting access to software credentialS .........coooeeviveiiiiiii e 20
7.2 Integration with OpPenMODIIE APl ..........uuiiiiiiiiiiei e 21
8. Outlook/Conclusions 22
9. Bibliography 23

Document name: SP 3/ WP 35

Page:

4 0f 24

Reference: D 35.5 Dissemination: PU Version:

1.0

Status:

Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

4. Project Description

The FuturelD project builds a comprehensive, flexible, privacy-aware and ubiquitously usable identity
management infrastructure for Europe, which integrates existing elD technology and trust
infrastructures, emerging federated identity management services and modern credential technologies
to provide a user-centric system for the trustworthy and accountable management of identity claims.

The FuturelD infrastructure will provide great benefits to all stakeholders involved in the elD value chain.
Users will benefit from the availability of a ubiquitously usable open source elD client that is capable of
running on arbitrary desktop PCs, tablets and modern smart phones. FuturelD will allow application and
service providers to easily integrate their existing services with the FuturelD infrastructure, providing
them with the benefits from the strong security offered by elDs without requiring them to make
substantial investments.

This will enable service providers to offer this technology to users as an alternative to
username/password based systems, providing them with a choice for a more trustworthy, usable and
innovative technology. For existing and emerging trust service providers and card issuers FuturelD will
provide an integrative framework, which eases using their authentication and signature related products
across Europe and beyond.

To demonstrate the applicability of the developed technologies and the feasibility of the overall
approach FuturelD will develop two pilot applications and is open for additional application services who
want to use the innovative FuturelD technology

Future ID is a three-year duration project funded by the European Commission Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 318424

Document name: | SP 3/ WP 35 Page: 5o0f 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

5. Integration of OpenMobile API and Plugin-Terminals

As outlined in deliverable D 35.3 (Implementation of the Security-relevant Modules for Selected
Platform) the Open Mobile APl is an API that allows applications on mobile devices to access various
kinds of secure elements in a standardized way [1]. These elements can be SIM cards, secure microSD
cards, or other kinds of secure tokens embedded in or attached to mobile devices. The API definition is
independent of a specific platform or programming language and can therefore be implemented on any
type of device and operating system.

Deliverable D 31.2 (Interface and Module Specification and Documentation) describes how the
OpenMobile APl is integrated into the mobile FuturelD client architecture for Android devices and how it
interacts with the IFD and the IFD proxy layer [2]. This integration allows establishing a single
communication channel to the Secure Element(s), which is also preferable from a security point of view.
In the basic version, the OpenMobile APl supports a channel to the SIM card as Secure Element. In order
to offer other channels as well, the concept of plugin-terminals was introduced and plugin-terminals for
NFC support and USB support have been implemented (see deliverable D 35.3) [1]. The implementation
of the plugin-terminals was demonstrated with a PKI applet on a SIM card, a USB token, and a
contactless card (NFC). The communication to all of these Secure Elements is possible via one channel
through the OpenMobile API and the corresponding plugin-terminals.

This demonstration however took place with a standalone app that integrates the extended OpenMobile
APl as a JCE provider. To make this implementation usable for FuturelD it was necessary to integrate the
APl into the FuturelD Android client. The following sections describe how the integration was achieved
and which further modifications were necessary to allow the interoperability with the IFD layer.

51 Integration into IFD Architecture

The Interface Device (IFD) service provides a common interface for communication with arbitrary

credentials. It encapsulates card terminals, smart cards, and secure elements and provides an interface
to easily access these devices. As described further in D 31.3, Figure 1 illustrates the architecture of the
implemented IFD [3]. As highest layer, the IFD provides an APl to access the service. The APl is specified
in D31.2 (Section 4) and provides a common interface for communication with arbitrary smart cards [2].

Document name: | SP 3/ WP 35 Page: 6 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

IFD API

Protocol API

Figure 1: IFD Architecture comprising the IFD APl and the underlying service layers (see D 31.3).

The Common module contains generic data structures and provides convenience functions of other
modules. The Protocol API provides an interface for protocols, which establish a secure channel between
the IFD service and connected smart cards. The SCIO (Smart Card Interface Input Output) APl provides an
interface for common smart card operations and abstracts from the particular interfaces technology like
PC/SC, NFC, or the Open Mobile API.

To manage a situation in which a device may contain more than one IFD, a proxy layer concept has been
introduced and implemented. This proxy transparently abstracts multiple IFD implementations towards
the SAL. The basic layout is shown in Figure 2. Modules that use the IFD proxy shall be unaware that the
actual execution is handled by one of the registered sub IFDs.

IFD Proxy

IFD API IFD API IFD API
PC/SC SICCT Open Mobile API TEE

Figure 2: IFD Proxy layer concept for handling multiple IFDs on one device (see D 31.3).

IFD API

As can be seen in Figure 2, one of the possible IFDs is the OpenMobile API which is also the preferred
choice for mobile devices. Since PC/SC and SICCT are more frequently found on desktop devices and TEEs
are not yet available on all mobile devices, the OpenMobile APl may be the only required IFD channel.
Especially with the new plugin-terminal implementation the APl is also able to address several types of
Secure Elements, thus eliminating the need for other parallel IFDs. In this case, the IFD proxy layer would
not be needed anymore. However, for reasons of simplicity and to keep the required modifications as
small as possible the extended OpenMobile APl was integrated into the existing implementation
containing the IFD proxy.

Document name: | SP 3/ WP 35 Page: 7 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity

Integration of the Securitx Relevant Modules into the FuturelD Client

5.2 IFD/OpenMobile API Integration

In order to integrate the extended OpenMobile APl (SEEK V3.2.1) into the IFD, the SCIO API has to be
implemented accordingly to address the OpenMobile API-specific methods and to use the plugin-
terminals [4]. In D 35.3 it was already described how the terminal interface of the OpenMobile API
interacts with the plugin-terminal modules [1]. The integration into the SCIO is illustrated by the class
diagram as shown in Figure 3. It shows how the SCIO classes use the terminal interfaces as provided by
the extended OpenMobile API.

==Java Class=»
(9 SeekTerminals

org.openecard. scio

=alava Classs>
(® SeekTerminal
org.openecard.scio

<aJava Class==
(9 SeekCard

org.openecard. scio

o seService: SEService
finstance: SCIOTerminals

{)sg etinstance(): SCIOTerminals
OCSBEI(TBY minals()

OFSBBKTBY minals{Context)

@ Ist{State) List<SCI0Terminak=

@ shutdow n{)-void

@ serviceConnected(SEService)-void
@ Iist():List<SCIOTerminak-

@ gefTerminal{ String):SCI0Terminal

@ getWatcher(): TerminalWatcher

v

<<Java Interface=>

@ list():List<SCIOTerminak-
@ gefTerminal{ String):SCIOTerminal
@ getWatcher() TerminalWatcher

o reader: Reader

OCS eekTerminalReader)

oaid: bytel]
o session Session

@ getMame():String

@ isCardPresent{)-boolean

@ w aitForCardA bsent(long)-boolean
@ waitFor CardPreseni(long):boolean
@ connect{SCIOProtocol):SCIOCard

v

<=Java Interface==
3 SCIOTerminal

org.openecard.commen.ifd.scio

& setAD{bytel])-void

OCS eekCard(Session)

@ beginbxclusive()void

@ disconnect{boolean):v oid

@ endBxclusive()-void

@ getATR{):SCIOATR.

@ getBasicChannel():SCIOChannel

@ getProtocol{):SCIOProtocal

@ openLogicalChannel(): SCIOChannel

@ fransmitConkrolCommandy(int byte[l)-bytel]

@ getMame():String
@ connect{SCIOProtocol):SCIOCard

@ gefTerminal{)-SCIOTerminal

v

€3 SCIOoTerminals @ isCardPresent()-boolean
org.openecard.commion.if d.scio @ w aitForCardPresent(long)-boalean —fava Herfaces
@ list{State) List<SCIOTerminal- & waitForCardAbsent{long):boalean € sclocard

org.openecard.commaon.ifd. scio

=aJava Classs=
(® SeekChannel

org.openecand.scio

o channek Channel

OCSBBI@annBI(mannBI)
@ close()void

@ getCard():SCIOCard

@ getChanneNumber():int

@ fransmit{byte[]):CardRes ponseAPDU
@ transmit{ByteBuffer, ByteBuffer):int
@ isBasicChannel{):boolean

@ fransmit{ Car dCommanda PDU):CardRes pons eAPDU

@ gefTerminal):SCIOTerminal

@ getATR():SCIOATR

@ getProtocol{):SCIOProtocol

@ getBasicChannel():SCIOChannel

@ openLogicalChannel{)-SCIOChannel

@ beginExclusive():void

@ endBxclusive():void

@ fransmitConirolCommand(int, byte[)-byte[]
@ disconnect{boolean):void

<=Java Class==
(9 SeekFactory

org.openecard. scio

ocSB ekFactory()
@ gefType():String
@ terminals({):SCIOTerminals

@ isLogicalChannel{)-boolean

v

v

=< Java Interface>>
3 SCIOChannel

org.openecard. common.ifd.scio

<<Java Interface=>
@ TerminalFactory

org.openecard.common.ifd.scio

@ getCard():SCIOCard

@ getChanneMNumber():int

@ isBasicChannel{)-boolean

@ isLogicalChannel{):boolean

@ fransmit{ byte[])-CardRes pons-eAPDU

@ transmit{ ByteBuffer, ByteBuffer):int

@ close():void

@ fransmil{ Car dCommanda POU):CardRes pons eAPDU

@ gefType():Siring
@ terminals():SCIOTerminals

Figure 3: Class diagram of the SCIO layer implementation using the extended OpenMobile APl with plugin-terminals.

Document name: SP 3/ WP 35

Page:

8 of 24

Reference: D 35.5

Dissemination:

PU

Version:

1.0 Status:

Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

For a smooth integration of the PKI applet use case into the FuturelD client it was necessary to make a
small modification of the SEEK V3.2.1 implementation. Due to the limitations of the OpenMobile APl it is
not foreseen that a select APDU from the IFD layer for selecting an applet with a specific Application
Identifier (AID) is simply passed on to the applet. Therefore, it is necessary to open a new channel to the
OpenMobile API with channel .getSession() .openBasicChannel (AID). With this extension
it is possible to select the PKl applet with its AID.

5.3 CardInfo File for PKI Applet

One of the foundations of the FuturelD client for accessing various types of elD cards are the CardInfo
files, as defined in CEN 15480-4. These XML-files describe the available applications on a card and
required information for accessing and using cryptographic keys. Thus, for each card that shall be
supported by FuturelD it is necessary to generate a CardInfo file. In WP 32.6 an automatic tool for
generating CardInfo files has been developed [5].

Accordingly, for supporting the PKI applet use case a CardInfo file has to be generated that describes the
applet functionality. Since this is not a standard PKCS#15 (ISO/IEC 7816-15) type of data structure,
significant modifications had to be done on the automatically generated file.

The following code contains the result of the Cardinfo file generation and adaption:

<?xml version="1.0" encoding="UTF-8" standalone="no"'?>
<iso:CardInfo xmIns:iso="urn:iso:std:iso-iec:24727:tech:schema"
xmIns:ns10=""http://uri.etsi.org/01903/v1.3.2#"
xmIns:nsll="urn:oasis:names:tc:SAML:1.0:assertion"
xmIns:nsl2=""urn:oasis:names:tc:SAML:2.0:assertion"
xmIns:nsl13=""http://www.w3.0rg/2001/04/xmlenc#"
xmIns:nsl4="http://ws.openecard.org/schema"
xmIns:ns15=""http://www.w3.0rg/2001/04/xmldsig-more#"
xmIns:ns16=""http://www.w3.0rg/2007/05/xmldsig-more#"
xmIns:ns2=""urn:oasis:names:tc:dss:1.0:core:schema"
xmIns:ns3="http://www.w3.0rg/2000/09/xmldsig#"
xmIns:ns4="http://www.bsi.bund.de/ecard/api/1.1"
xmIns:ns5="http://uri.etsi.org/02231/v2.1.1#"
xmIns:ns6=""http://uri.etsi.org/02231/v2 _x#"
xmIns:ns7="http://uri.etsi.org/02231/v3.1_2#"
xmIns:ns8="http://www.setcce.org/schemas/ers”™ xmlns:ns9="urn:oasis:names:tc:dss-
x:1.0:profiles:verificationreport:schema#">
<iso:CardType>
<iso:Objectldentifier>Cardinfo_PKI_Giesecke Devrient.xml</iso:Objectldentifier>
<iso:CardTypeName xml:lang=""en">PKIl Giesecke Devrient</iso:CardTypeName>
<iso:CardTypeName xml:lang="'de">PKIl Giesecke Devrient</iso:CardTypeName>
<I-- version corresponds to cif version -->
<iso:Version>
<iso:Major>0</iso:Major>
<iso:Minor>0</iso:Minor>
<iso:SubMinor>1</iso:SubMinor>
</iso:Version>

Document name: | SP 3/ WP 35 Page: 9 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

<iso:Status>Final</iso:Status>
<iso:Date>2014-24-10</iso:Date>
</iso:CardType>
<iso:Cardldentification>
<iS0:ATR>
<iso:TS>
<iso:Value>3B</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TS>
<iso:TO>
<iso:Value>9F</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TO>
<iso: InterfaceBytes>
<iso:Tx1>
<iso:TAiI>
<iso:Value>C7</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TAi>
<iso:TBi>
<iso:Value>AO</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TBi>
<iso:TDi>
<iso:Value>3F</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TDi>
</iso:Tx1>
<iso0:Tx2>
<iso:TAiI>
<iso:Value>C7</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TAi>
<iso:TBi>
<iso:Value>AO</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TBi>
<iso:TDi>
<iso:Value>3F</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TDi>
</iso:Tx2>
<is0:Tx3>
<iso:TAiI>
<iso:Value>C7</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TAi>
<iso:TBi>
<iso:Value>AO</iso:Value>
<iso:Mask>FF</iso:Mask>
</iso:TBi>
<iso:TDi>
<iso:Value>3F</iso:Value>
<iso:Mask>FF</iso:Mask>

Document name: | SP 3/ WP 35 Page: 10 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity

Integration of the Securitx Relevant Modules into the FuturelD Client

</iso:TDi>

</is0:Tx3>

<iso:Tx4/>

</iso:InterfaceBytes>
<iso:HistoricalBytes>

<iso:Ti>
<iso:Value>80</iso:Value>
<iso:Mask>00</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>31</iso:Value>
<iso:Mask>00</i1so:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>EO</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>73</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>F6</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>21</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>13</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>57</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>4A</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>4D</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>0E</iso:Value>
<iso:Mask>FF</iso:Mask>

</iso:Ti>

<iso:Ti>
<iso:Value>1D</iso:Value>
<iso:Mask>00</i1so:Mask>

</iso:Ti>

<iso:Ti>
Document name: | SP 3/ WP 35 Page: 11 of 24
Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

<iso:Value>34</iso:Value>
<iso:Mask>00</iso:Mask>
</iso:Ti>
<iso:Ti>
<iso:Value>4l</iso:Value>
<iso:Mask>00</iso:Mask>
</iso:Ti>
<iso:Ti>
<iso:Value>00</iso:Value>
<iso:Mask>00</iso:Mask>
</iso:Ti>
</iso:HistoricalBytes>
</is0:ATR>
<iso:CharacteristicFeature>
<l--
The recognition of the card type will be realized by
(1.) selecting the file EF.DIR and
(2.) reading the content with the READ BINARY command and
comparing the result with the value specified below.
==
<iso:CardCall>
<I-- 1. CL=00, INS=A4=SELECT, P1= 02, P2=0C, Lc=02,
Data=2F00 (FI of EF.DIR), Le=absent -->
<iso:CommandAPDU>00A4020C022F00</iso:CommandAPDU>
<iso:ResponseAPDU>
<iso:Trailer>9000</iso:Trailer>
</iso:ResponseAPDU>
</iso:CardCall>
<iso:CardCall>
<I-- 2_ CL=00, INS=BO=Read Binary, P1=00, P2=00 (no offset),
Lc=00, Le=5A -->
<iso:CommandAPDU>00B0O00005A</iso: CommandAPDU>
<iso:ResponseAPDU>
<I-- gpecific content of EF.DIR --—>
<iso:Body>
<iso:MatchingData>
<iso:0ffset>00</iso:0ffset>
<iso:Length>5A</iso:Length>

<iso:MatchingValue>61324FOFE828BD0O80FA000000167455349474E500F434941207A752044462
E655369676E5100730C4FO0AA000000167455349474E61094F07A0000002471001610B4F09E80704007F0007
0302610C4F0AA000000167455349474E</iso:MatchingValue>
</iso:MatchingData>
</iso:Body>
<iso:Trailer>9000</iso:Trailer>
</iso:ResponseAPDU>
</iso:CardCall>
</iso:CharacteristicFeature>
</iso:Cardldentification>
<iso:ApplicationCapabilities/>
</iso:CardInfo>

Document name: | SP 3/ WP 35 Page: 12 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

With this CardInfo file, the extended OpenMobile API and the integration into the FuturelD client IFD
architecture it is now possible to demonstrate the use of a PKl applet, as it can be found in many mobile
ID applications, with the FuturelD client. The applet can be accessed by the client when it is available on

a SIM card, as well as on a dual interface card via NFC or a USB token. Thus, with this extension the

FuturelD client also supports mobile ID use cases.

In addition, with establishing a single communication channel to various types of Secure Elements via the
OpenMobile API, the system architecture as outlined in deliverable D 35.2 (section 7.3) has been realized

[6].

Document name: SP 3/ WP 35

Page:

13 of 24

Reference: D 35.5

Dissemination:

PU

Version:

1.0

Status:

Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

6. Integration of ARM TrustZone-based eSign Modules

As it was described in deliverable D35.3 (Implementation of the Security-relevant Modules for Selected
Platform) the ARM TrustZone is a Trusted Execution Environment where security relevant computations
can be isolated from other, non-secure operations [1]. Therefore, the ARM TrustZone can be used to
store and manage confidential information, such as certificates, and perform computations, such as
signature creation, without exposing any security relevant data.

6.1 ARM TrustZone Provider

The ARM TrustZone (TZ) Provider’s architecture is based upon the SAL Provider architecture presented in
deliverable D32.5 (Implementation of protocol-specific modules for selected protocols) [7]. Thus, the
TZProvider was implemented as a Java Cryptographic Service Provider (JCP) and, thereby, allows for
transparently calculating signatures as well as generating key pairs utilizing the TZ.

In order to manage multiple key pairs and make handling of these more convenient, every key pair has
an alias associated with it. To configure the alias as well as the key size of the generated key pair, the
KeyPairGenerator must be initialized with a TZKeyParamSepc object containing the alias and the key
length. Figure 4 illustrates the TZKeyPai rGenerator and the TZKeyParamSpec classes.

<clava Classsx
(9 TZKeyParamSpec
org. futureid.chent. addons . esign. provider

zefava Classs:

(3 TZKeyPairGenerator 4 alias: String
g futuneid chert_addons_esign provider & keySipe: int
& TZKeyParamSpec))

& TZKeyPairGenerator()
@ initialize{ AlgorithmParameterSpac) void
& genarateKeyPak():KeyPair

@ selAkas|String)-void
i@ petAlas():String

@ setheySize(int)-void
& getKeySize|)-int

Figure 4: The key pair generator and parameter specification classes.

A key pair consists of a TZRSAPubl icKey and TZPrivateKey. TZRSAPubl icKey is an

RSAPubl icKey in the means of the JCE provider of the IAIK Institute of TU Graz, whereas the
TZPrivateKey stores the alias and the key length and can be seen as a reference to the actual private
key stored in the TZ. Figure 5 depicts the TZRSAPubl icKey and RSAPubl icKey classes.

Document name: | SP 3/ WP 35 Page: 14 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

=<ava Class>>
<=lava Classs> (5 TZPrivate Key
GEHSﬁ PublicKey org. futureid. chent. addons. esign. provider
org. fulureid chent. addons . esign. provider & params: TZKeyParamSpec
{fTZRsp.PuhlicKey(Eigmtege r Biginteger) {)CTZ Privatekey(TZProviderProxy, TZKeyParamSpec)
{fTZRSAPuhIicKey'(String.Stringj @ getAlias():String
@ getkeySize()int

Figure 5: The TZRSAPublicKey and TZPrivateKey classes.

6.2 Java Native Interface (JNI) Wrapper

For creating signatures and generating key pairs it is necessary to interact with the TZ. As described in
deliverable D35.3 section 7.3 (Architecture and Implementation) [1], this is achieved by implementing a
Java native interface (JNI) wrapper. The JniWrapper . class contains the methods required to
interact with the TZ. This class is responsible for calling the native TZ methods, and, additionally, for pre-
processing data passed to/from the TZ. The methods provided by the JNI wrapper are shown in Figure 6.

==Java Classs=
(5 JniWrapper

org. futureid. clent. addons. esign

@ setCertificate X509Certificate, String) boolean

@ checkPinValid(String) :boolean

@ generatekeyPair| TZKeyParamSpec). TZRSAPublickey
@ sign|Biginteger, String) byte]]

@ getCertificate( String) -X509Certificate

@ getAvailableKeyAliases|):List=String=

Figure 6: The JniWrapper class.

6.2.1  JNI Wrapper Method Description

e getAvailableKeyAliases

As mentioned in Section 6.1, the TZ uses aliases to distinguish between multiple keys. This
method retrieves the aliases from all available key pairs stored in the TZ.

o getCertificate

With this method, the certificate for a key, identified by its alias, can be retrieved from the TZ.

Document name: | SP 3/ WP 35 Page: 15 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity

Integration of the Securitx Relevant Modules into the FuturelD Client

e sign

The sign method calculates the signature for the given digest using the private key the given alias

references.

e generateKeyPair

This method allows for generating a RSA key pair. The key size and the alias are specified in a

TZKeyParamSpec object.

e setCertificate

In order to use previously generated keys for signature creation, a valid certificate must be

imported. This method is provided therefor.

e checkPinValid

This method compares a given PIN with the PIN stored in the TZ.

6.3 Integration into the FuturelD client

In order to demonstrate the aforementioned features, a prototypical GUI was implemented. The

FuturelD client allows for creating signatures, generating key pairs and the corresponding Certificate Sign

Request (CSR), and importing certificates into the TZ.

As described in Section 6.1, the TZ identifies key pairs by an alias. In order to be able to select the key,
which should be used for signing or to which an imported certificate belongs to, the GUI, shown in Figure

7, is provided.

Document name: SP 3/ WP 35

Page:

16 of 24

Reference:

D355

Dissemination:

PU

Version:

1.0

Status:

Final




Shaping the Future of Electronic Identity
Integration of the Security Relevant Modules into the FuturelD Client

b Select Alias - + X
|"| Select Alias
Select Alias Select Alias

 default

@ ftest

| Confirm | | Cancel |

Figure 7: The dialog for selecting a key alias.

6.3.1  Sign

After a sign request was received and confirmed, the user is instructed to select a key which should be
used for signature creation. By pressing the “Confirm” button, the data, for which the signature should
be calculated, is passed into the TZ. The TZ then calculates the signature using the previously selected
key.

6.3.2  Generate Key Pair

In order to be able to generate a key pair and the corresponding CSR, the following steps have to be
performed. A separate dialog for each step is provided.

e Firstly, the user must specify an alias. If an alias is not specified, a MessageBox, informing the
user that an alias must be specified, is shown (not depicted here).

e After defining the alias, the user must choose the desired key length. The dialog presented in
Figure 8 is provided therefore. A key length of 2048 bits is selected by default.

Document name: | SP 3/ WP 35 Page: 17 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Security Relevant Modules into the FuturelD Client

b4 Generate Certificate Sign Request - + X
|“ Specify Key Size
Enter Alias Select Key Size
Specify Key Size /512 bits
Enter Subject ) 1024 bits
® 2048 bits
| Back | | Mext | | Cancel

Figure 8: The dialog for selecting the key length.

e Finally, the user must define the subject. Figure 9 shows the dialog, where the subject (Country,
Locality, Organization, Organizational Unit, Common Name), can be defined.

hd Generate Certificate Sign Request - + X
"I Enter Subject
Enter Alias Country
Specify Key Size [aT |
Enter Subject Locality
[Graz |

Organization

[Tu Graz |

Organizational Unit

1 |

Common Name

[TestUsar |

Back | | Confirm | ‘ Cancel

Figure 9: The dialog for defining the subject.

Document name: | SP 3/ WP 35 Page: 18 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Security Relevant Modules into the FuturelD Client

By pressing the “Confirm” button the TZ is instructed to generate a key pair. If the key pair generation
was successful, a CSR, consisting of the generated public key and the previously defined subject, is
created, signed, and finally presented to the user. Figure 10 shows the CSR dialog with a generated CSR.

i Generate Certificate Request - + X

CSR [~—-EEGIN NEW CERTIFICATE REQUES

----- BEGIM NEW CERTIFICATE REQUEST--—-
MIICIDCCAKwWCAQAwUIDELMAKGAL UEBRMC QWD TALBgMVE ACTEEdyYXoKE|
BACTE1RVIEdyHonDTALEgNVBASTEEIBSUsHETAPBgNVEAMTCFRICIRVE 2,
ITAMEgkghki GEwIBAQEFAADCAQAAMIIBCQRCAQBONtRTO]RHwWEOIN1 3PP
gEfNVHT QeBSSHzN 7 IISFaAGHIHAAMIDShHCKFFSYWMIGynermgkGLAVYSEIn Oy
06 3KA Lgobd TyWiemEXYFODIR Bt xh F7KUFS LAY TSE3aCokPed3HAOmODz+
XonElfo/ceKdBgLZYKQOmH/ 2k57nDURUE4 4B9MN|sOXADC 8445 mS MM/ IwEx
niF0pzh 2 RN GFOMiKgjwsfiHyk P2 8VibAQPhuThk uAdAuG O+ kTUphPheZr3z
Ff7vepEdGcpllmMyhz)iTezNFeHNsgHZb8g ZXGdHEUWHd 3ypf+ KK1 XU ZyKor
AAGgADANBgkghkiGEwIBADSFAAOCADEAaKcaC CINURUKSeNZUWF1cn)
MNArrsuohozkn7 gfdk35j4+ e CTUSKOEEfhTvwO3kpgsLeWb&WoBt8Thgrt 3
AMHOWSKL VEXRE kDUsfCEwWEFUI2ZXgPqZ TCZXF6p 2bagMmhcP k0l c
|52Eig0ICDUpPQanzl BnSESe0gPY+nryGe0zo T/GySmoQGLEhpI 3Y0BHOGYHI
oBwsH/BIOSKGeiQkf7/cay W7 etAD7UBLCO StrLudXP Grr/I2mzs1 KTDEIADME
P&8hud+izSuYPP +w/8G0AehEYcPMAYZ21 g8 Cw/0ALZNLdgHEgSebg== -
MEW CERTIFICATE REQUEST----

Confirm | | Cancel

Figure 10: The CSR dialog.

6.3.3  Import Certificate

The first step, when importing a certificate, is to select the key alias to which the certificate belongs to.
After selecting an alias, a file selection dialog, where the user can select the certificate which should be
imported, is opened. By pressing the “Open" button, the certificate is parsed and stored in the TZ. The
user is then able to use the generated key to fulfil signing requests.

6.4 Remarks

Currently, the TZProvider and the TZ operate with RSA keys only. However, the TZProvider as well as the
TZ could be extended in order to handle ECDSA keys.

Document name: | SP 3/ WP 35 Page: 19 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

7. Integration Scenarios for Mandatory Access Control

The goal of Mandatory Access Control is to be able to regulate the access to critical resources and other
software elements in order to ensure authorized use of such systems and avoid unwanted utilization of
them [1]. In this scenario, the use of the Android Security Modules (ASM) framework was proposed to
enforce access control on Android. Since a full integration of the ASM framework is beyond the scope of
FuturelD, this chapter will elaborate scenarios of how the ASM framework can be utilized for FuturelD.

ASM provides a modular system to enhance controlled access to different parts of the Android
framework. In this section we will explore how the ASM framework can be integrated with FuturelD
elements.

7.1 Protecting access to software credentials

In the FuturelD scheme, users can use different types of credentials to, for example, create a signature or
authenticate to a Service Provider. These credentials can be contained inside a SmartCard but also saved
into a file on the device.

One of the proposed integration scenarios is that the ASM framework, using the hooks to the file system,
restricts the access to the software credentials so that only the FuturelD client is able to access to this
file, and additionally creates a dialog prompting the user to confirm such access (see Figure 11).

Access to Credentials

An application is trying to access the

credential file. Allow access?

Deny Allow

Figure 11: ASM callback warning the user of the access.

Document name: | SP 3/ WP 35 Page: 20 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

This way, the user will be aware that an application is accessing the credentials saved on the device and
will be able to control this access and even deny it if this was unexpected.

7.2 Integration with OpenMobile API

As explained in section 5, the OpenMobile API has been integrated with the FuturelD architecture to
enable access to secure elements in Android platforms. Another proposed integration scenario is to
protect the access to the secure element using the Android Security Modules framework. To make this
integration possible, ASM was updated to the latest version of Android supported at the moment by the
SEEK for Android project, which was the 4.4.4 version, as explained in section 6.1.1 of deliverable D35.3

[1].

In this scenario the NFC plugin-terminal is used to provide the FuturelD client with an access to a
contactless smartcard. In order to secure this access and in a similar way as with the software
credentials, the ASM framework is used to give the user the choice on whereas to allow the access or
deny it (Figure 12).

FuturelD ASM
Client Callback
1 2 a
NFC ASM
Plugin-Terminal 2 Framework 5 martCard

Figure 12: Integration scenario between OpenMobileAPl and ASM

When the FuturelD client wants to access the Smartcard, it will contact the NFC plugin-terminal. The
ASM framework will detect this access and will call the correspondent callback method that will ask for
interaction from the user, for example a switch being enabled beforehand or a dialog as shown in the
example before.

Document name: | SP 3/ WP 35 Page: 21 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

8. Outlook/Conclusions

This deliverable documents that it is possible to add security enhancing features to the client device
platform and to integrate them into the FuturelD client architecture. This additional security allows for a
better protection of credentials, especially those outside of secure elements, and an easier access over
various transport channels like NFC, USB or the SIM card. Supported by this infrastructure, mobile ID
solutions as well as smartcard based use cases are easier to roll out and to use.

The integration of the OpenMobile API with plugin terminal extension supports the establishment of a
single and thus better to control channel to secure elements on various form factors. Using a contactless
or dual interface card via NFC, a secure USB token or an applet on a SIM card can be managed over one
dedicated channel. This solution comes close to the system architecture initially envisioned in deliverable
D 35.2 [6].

By using Mandatory Access Control (MAC) mechanisms, additional support of software-based credentials
can be achieved. Without this protection these credentials would be especially vulnerable to cloning
attacks and thus a potential identity theft. However, Access Control alone will not prevent every type of
cloning attack and therefore needs to be embedded into additional security measures for protecting
software-only credentials.

Using a Trusted Execution Environment (TEE), wherever available, is a reasonable approach for
significantly enhancing security compared to software-only solutions. This work has shown that TEEs can
reasonably be integrated into the FuturelD client architecture by providing security critical services from
inside a TEE. This has been demonstrated for the signature use case but it can be extended to other use
cases as well, including the use of software-based credentials and Attribute Based Credentials (ABCs).

All discussed solutions will have an impact beyond the FuturelD project since they can be integrated into
other security critical use cases as well. This can include mobile payment related applications as well as
strong authentication, access control (physical and logical) and authorization of transactions.

Document name: | SP 3/ WP 35 Page: 22 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




Shaping the Future of Electronic Identity
Integration of the Securitx Relevant Modules into the FuturelD Client

9. Bibliography

[1] FuturelD, WP 35 - Trustworthy Client Platform, D35.3, Implementation of the Security Relevant
Modules for the Selected Platform, 2015.

[2] FuturelD, WP 31 - Interface Device Layer, D31.2, Interface and module specification and
documentation, 2013.

[3] FuturelD, WP 31 - Interface Device Layer, D31.3, Implementation of the IFD Service for selected
Platforms, 2014.

[4] “SEEK for Android,” Google, 2014. [Online]. Available: https://code.google.com/p/seek-for-
android/wiki/AddonTerminal.

[5] FuturelD, WP 32 - elD Serivces, D32.6, Tool for automated creation of Cardinfo files, 2014.

[6] FuturelD, WP 35 - Trustworthy Client Platform, D35.2, Interface and Module Specification and
Documentation, 2014.

[7] FuturelD, WP 32 - elD Services, D32.5, Implementation of protocol-specific modules for selected
protocols, 2015.

[8] FuturelD, WP 32 - elD Services, D 32.2, Interface and Module Specification and Documentation, 2014.

Document name: | SP 3/ WP 35 Page: 23 of 24

Reference: D 35.5 Dissemination: PU Version: 1.0 Status: Final




	1. Abstract
	2. Document Information
	2.1 Contributors
	2.2 History

	3. Table of Contents
	4. Project Description
	5. Integration of OpenMobile API and Plugin-Terminals
	5.1 Integration into IFD Architecture
	5.2 IFD/OpenMobile API Integration
	5.3 CardInfo File for PKI Applet

	6. Integration of ARM TrustZone-based eSign Modules
	6.1 ARM TrustZone Provider
	6.2 Java Native Interface (JNI) Wrapper
	6.2.1 JNI Wrapper Method Description

	6.3 Integration into the FutureID client
	6.3.1 Sign
	6.3.2 Generate Key Pair
	6.3.3 Import Certificate

	6.4 Remarks

	7. Integration Scenarios for Mandatory Access Control
	7.1 Protecting access to software credentials
	7.2 Integration with OpenMobile API

	8. Outlook/Conclusions
	9. Bibliography

