
Future AnB : The projected APS Language of
FutureID

D42.3

Document Identi�cation

Date 30/08/2013

Status Final

Version 1.0

Related
SP/WP

SP4/WP42.3 Document
Reference

LiveLink

Related
Deliverable(s)

D42.1 Dissemination
Level

PU

Lead
Participant

DTU Lead Author Omar Almousa
Sebastian Mödersheim

Contributors Moritz Horsch(TUD) Reviewers Jaap-Henk Hoepman(RU)
Peter Lipp(TUG)

Abstract: We introduce Future AnB : the projected Authentication Protocol Speci�cation
(APS) language for the FutureID project.

This document is issued within the frame and for the purpose of the FutureID project. This project has
received funding from the European Unions Seventh Framework Programme (FP7/2007-2013) under
grant agreement no. 318424.

This document and its content are the property of the FutureID Consortium. All rights relevant to this
document are determined by the applicable laws. Access to this document does not grant any right or
license on the document or its contents. This document or its contents are not to be used or treated
in any manner inconsistent with the rights or interests of the FutureID Consortium or the Partners
detriment and are not to be disclosed externally without prior written consent from the FutureID

Partners.

Each FutureID Partner may use this document in conformity with the FutureID Consortium Grant
Agreement provisions.

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

1 Executive Summary

We introduce Future AnB : the projected Authentication Protocol Speci�cation (APS) language
for the FutureID project. We present the syntax of Future AnB in Extended Bakus-Naur
Form. We then give a formal semantics for our language by translation to (an extended version
of) strands [1] from where we can easily connect to the input languages of various tools like
AVISPA [2], [3] and ProVerif [4]. We also show how to translate protocol speci�cations into
Java programs. We illustrate all the di�erent aspects with a running example: the Extended
Access Control (EAC) protocol [5], [6].

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 1 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

2 Document information

2.1 Contributors

Name Partner

Omar Almousa DTU
Moritz Horsch TUD
Sebastian Mödersheim DTU

2.2 History

0.1 2013-03-1 Omar And Sebastian 1st Draft
0.2 2013-05-15 Omar And Sebastian 2nd Draft
0.3 2013-07-15 Omar And Sebastian 3rd Draft

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 2 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

2.3 Table of Contents

1 Executive Summary 1

2 Document information 2

2.1 Contributors . 2

2.2 History . 2

2.3 Table of Contents . 3

2.4 List of References . 4

3 Introduction 6

4 Protocol speci�cation structure 8

4.1 Protocol . 8

4.2 Types . 8

4.3 Mappings . 10

4.4 Formats . 10

4.5 Macros . 11

4.6 Knowledge . 12

4.7 Actions . 13

4.8 Goals . 15

5 Future AnB Grammar 16

6 Prede�ned primitives 18

7 Semantics 19

7.1 Message Model . 19

7.2 Translation preprocessing . 21

7.3 Detailed strands . 22

7.3.1 Detailed strands syntax . 22

7.3.2 Detailed strands semantics . 25

7.3.3 Translation Future AnB to detailed strands 26

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 3 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

7.3.4 EAC in strands . 28

7.3.5 Making strands detailed . 29

7.3.6 EAC in detailed strands . 31

8 Generating implementation 34

8.1 Participants programs . 34

8.2 Formats classes . 35

9 The AVISPA Intermediate Format (IF) 37

10 Conclusion 38

A Future AnB Grammar in EBNF 39

B EAC protocol speci�cation in Future AnB 41

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 4 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

2.4 List of References

[1] Fábrega, F.J.T., Herzog, J.C. and Guttman, J.D. Strand spaces: Why is a security pro-

tocol correct? In Security and Privacy, 1998. Proceedings. 1998 IEEE Symposium on,
(IEEE1998) 160�171.

[2] AVISPA. AVISPA Project: Automated Validation of Internet Security Protocols and Appli-

cations project.
http://www.avispa-project.org/

[3] AVISPA. Deliverable D2.3: The Intermediate Format, 2003.

[4] Blanchet, B. and Smyth, B. ProVerif 1.85: Automatic Cryptographic Protocol Veri�er,

User Manual and Tutorial, 2011.

[5] Bundesamt fur Sicherheit in der Informationstechnik (BSI). Advanced Security Mechanism

for Machine Readable Travel Documents Extended Access Control (EAC). Technical report,
Technical Report (BSI-TR-03110) Version 2.02 Release Candidate, 2008.

[6] Dagdelen, Özgür and Fischlin, Marc. Security analysis of the extended access control protocol
for machine readable travel documents. In Information Security, 54�68, (Springer2011).

[7] Mödersheim, S. and Viganò, L. The Open-source Fixed-point Model Checker for Symbolic

Analysis of Security Protocols. Foundations of Security Analysis and Design V, 2009. 166�
194.

[8] Mödersheim, S. Algebraic Properties in Alice and Bob Notation. In Availability, Reliability

and Security, 2009. ARES'09. International Conference on, (IEEE2009) 433�440.

[9] Dolev, Danny and Yao, Andrew. On the security of public key protocols. Information

Theory, IEEE Transactions on, 1983. 29(2):198�208.

[10] Mödersheim, S. and Viganò, L. Secure pseudonymous channels. Computer Security�

ESORICS 2009, 2009. 337�354.

[11] Cremers, Cas and Mauw, Sjouke. Operational Semantics of Security Protocols. In Stefan
Leue and TarjaJohanna Systä, editors, Scenarios: Models, Transformations and Tools, vol-
ume 3466 of Lecture Notes in Computer Science, 66�89, (Springer Berlin Heidelberg2005).
ISBN 978-3-540-26189-6. doi:10.1007/11495628_4.
http://dx.doi.org/10.1007/11495628_4

[12] Armando, A. and Compagna, L. SATMC: A SAT-based Model Checker for Security Proto-

cols. Logics in Arti�cial Intelligence, 2004. 730�733.

[13] Turuani, M. The CL-Atse protocol analyser. Term Rewriting and Applications, 2006. 277�
286.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 5 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

http://www.avispa-project.org/
http://dx.doi.org/10.1007/11495628_4
https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

3 Introduction

We de�ne Future AnB : the Authentication Protocol Speci�cation language APS for the FutureID
project. This language meets the need for a simple intuitive speci�cation language that is ex-
pressive enough to specify the authentication protocols, especially eID protocols, of our project.
It serves to specify authentication protocols and enables automated veri�cation with tools like
OFMC [7] and ProVerif [4]. It also enables automated translation from a protocol speci�cation
to a protocol implementation in Java for instance. This document describes in detail Future
AnB, a language based on the popular Alice-and-Bob notation (aka message sequence charts,
or protocol narrations) and extended from AnB [8]. Plain AnB is one of the input languages of
the OFMC tool.

We believe that this language has several advantages over other languages in protocol veri�cation:

• It is simple and easy to use; it enables intuitive one-go modelling for protocols.

• It is possible to connect its speci�cation to a broader variety of veri�cation tools, because
it is less focused on a particular paradigm.

• It allows for checking that a protocol is executable and derive implementations.

• It introduces an abstraction from the concrete way of structuring plain text (e.g., xml
tags) through formats that makes it easier for compositional reasoning in WP 2.4.

In the following we provide a brief introduction to the Extended Access Control (EAC) protocol
(used in ePassports) that we use as a running example to explain the details of the Future AnB
language in the remainder of this report. EAC is a two-party protocol aiming at providing
mutual authentication. The protocol takes place in the environment of the German ID card.
Through EAC (1) a terminal (Proximity Coupling Device, PCD) authenticates itself to the ID
card (Proximity Integrated Circuit Card, PICC) to get access to the personal data stored on the
card and (2) the German ID Card, i.e., the PICC, proves its authenticity to the PCD. Protocol
narrations shown below, though very abstract, gives a brief idea of EAC.

PCD → PICC : {PCD,PKPCD}PK−1
ca

PICC → PCD : R1

PCD → PICC : {PICC,Random1, hash(gX)}PK−1
PCD

PICC → PCD : R2
PCD → PICC : gX

PICC → PCD : mac(h3(gX.SKPICC), R3),
{C, gSKPICC}PK−1

ca , R3

The protocol is narrated in the form A→ B : M , meaning that entity A sends the a message M to
entity B. PCD and PICC in the �rst and third messages are identi�ers for the respective entities.
PKPCD denotes the public key and PK−1

PCD denotes the corresponding private key for PCD (the
same applies for PICC and the Certi�cate Authority ca). R1, R2 and R3 are fresh nonces.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 6 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

gX , gSKPICC are Di�e-Hellman key parts of PCD and PICC respectively (X is fresh secret of
PCD and SKPICC is a private key of PICC and g• are the public values).

The rest of this document is structured as follows: Section 4 gives the structure of a protocol
speci�cation in Future AnB. Then section 5 provides an overview of the Future AnB grammar
(the detailed grammar is in Appendix A). Section 6 concludes the syntax part of our language
by listing its prede�ned primitives (reserved words). After specifying the syntax, we de�ne a
formal semantics for Future AnB in Section 7 by providing a translation to an extended version
of strands (we call them detailed strands) and de�ne a formal semantics for detailed strands.
We continue with our running example (EAC protocol) to illustrate di�erent aspects of this
translation. From detailed strands we illustrate how generated implementation (Java code)
generation looks like in Section 8. Finally, we specify the translation to AVISPA IF in Section
9.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 7 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

4 Protocol speci�cation structure

A protocol speci�cation in Future AnB consists of eight sections. Each section describes an
aspect of the protocol. We give an overview of each section and then explain them using the
EAC protocol.

1. Protocol: Gives name of the speci�ed protocol.

2. Types: Declares protocol entities.

3. Mappings: Relates di�erent protocol object to each other e.g., an agent to its public key.

4. Formats: Speci�es plain text data structure for composing and decomposing.

5. Macros: Provides abbreviations.

6. Knowledge: Shows the initial knowledge of each participant in the protocol.

7. Actions: Speci�es exchanged messages and performed tasks in an ideal run of the protocol.

8. Goals: Speci�es what the protocol is supposed to achieve, e.g., secrecy of a message.

4.1 Protocol

This section gives the protocol a name (i.e., an identi�er) as can be seen in Listing 1. There is
no particular signi�cance for this section rather than �naming".

Listing 1: Protocol

Protocol: EAC

4.2 Types

This section declares protocol identi�ers (constants or variables). Constants (start with a lower-
case letter) and variables (start with an upper-case letter) form atomic message components in
a protocol and referred as terms. A term is either an atomic term (constant or variable) or a
composed term. Composed term is the application of a signature symbol, e.g., crypt or sign on
a set of arguments that are terms. Signature symbols include mappings, functions, formats, or
macros will be discussed later in more details.

In the Types section we require the declaration of all protocol variables and constants. As one
can see in Listing 2 this section starts with a header Types: followed by a set of declaration
statements.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 8 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

Listing 2: Types section

Types:

Agent PCD, PICC,ca ;
Nonce IDp i c c , Rpicc , Rmac ;
Number X, g ;
ImpData CertDesc , RCHAT, OCHAT, AuxData, RC,

CHAT, CAR, EFC, NoCert ;

A declaration statement has the form of:

datatype identifiers;

Where identi�ers can be either constants (uncapitalized) such as ca and g and variables (cap-
italized) such as PCD, PICC etc. Variables are instantiated with concrete values during the
protocol execution. Furthermore datatype is any of the following prede�ned data types:

1. Agent: Declares protocol agents. The Agent type is the key data type of speci�cations
and it is special in the sense that constants of this type (called honest agents hereafter)
represent honest agents whereas variables of this type (called roles hereafter) can be either
honest or not; since they represent the di�erent roles of the protocol and can be instantiated
arbitrarily with concrete agent names including the intruder i, i.e., the intruder i can only
impersonate roles. i is a prede�ned constant identi�es the intruder. For convention, by
agents we mean roles, honest agents, and the intruder i. And by participants we mean
agents that directly participate in the protocol.

2. PublicKey: Declares public keys, although usually we use the mapping pk() (discussed
later in Section 4.3) to relate agents to their public keys.

3. PrivateKey: Declares private keys. We encourage its use as a data type in declaring
mappings or formats only, but not in declaring identi�ers (in Types section) to avoid
having unrealistic speci�cation. So we forbid to declare identi�ers of type PrivateKey in
Types section.

4. Number: Declares identi�ers for number.

5. Nonce: Declares random numbers typically used as nonces in protocols.

6. SymmetricKey: Declares symmetric keys identi�ers although shk() mapping is more con-
venient for this purpose as later discussed.

7. Msg: A generic data type used to represent the resulting type of applying cryptographic
primitives. For example the data type of sign(Key,Message) is Msg (for simplicity espe-
cially in declaring formats).

8. ImpData: De�nes identi�ers that are relevant for protocol implementation but not for the
abstract model.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 9 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

Note that variables of data types with the exception of Agent represent fresh values that are
created by the agent that �rst uses them. So we forbid the existence of any variables of other
data type (other than Agent) in Knowledge section.

4.3 Mappings

Mappings are meant to relate di�erent objects in the abstract model, i.e., we relate an agent
A to its public key using a mapping pk(A). We also relate a private key to a public key by
another mapping inv(). inv() works also for many keys (not only those modelled by pk()).
Those are abstract functions that exist only in the abstract model and have no corresponding
implementation in the real/concrete world. Mappings is an optional section that starts with the
heading Mappings : as shown in Listing 3.

Listing 3: Mappings section

Mappings:

pk : Agent −> PublicKey ;
i n v : PublicKey−> PrivateKey ;
shk : Agent , Agent −> SymmetricKey ;

A mapping has the form of:

identifier : datatypes → datatype;

Where identifier is the name of our mapping, e.g., shk. datatypes is a data type or comma-
separated list of them such as Agent, Agent. This list re�ects one side of the function of the
mapping. The other side of the relation is given by a datatype (SymmetricKey in shk case). shk
relates two agents to a symmetric key (which models the shared key of two agents). Note that
for the three of shk(,), pk() and inv() there is no such functions or procedures in reality, but are
very helpful for modelling. Moreover, all of them are prede�ned mappings in Future AnB so
one can directly use them and will not see them in the full EAC speci�cation in Appendix B.
Of course one can de�ne new mappings as needed in Mapping section.

Mappings are private in a sense that a participant can not calculate a mapping (knowing the
public key of another participant does not result in knowing its private key using inv()). A
participant is given a mapping in his initial knowledge or he get it from a message that he
receives.

4.4 Formats

This section declares the structure of plain text data and describes how the contents of messages
are composed or parsed. It relates abstract syntax to concrete messages of the protocol by
modelling the fact that concrete messages are of di�erent formats and that they are meant to be
di�erent. It gives an abstraction of the concrete plain text messages structure (e.g., xml tags).
On another hand, the modelling of message distinction (on basis of composing and decomposing)

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 10 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

that formats serves makes it easier for compositional reasoning in WP 2.4. We encourage the
use of formats for plain text structure since concatenating (or pairing) of plain messages is too
abstract to generate implementations from.

As seen in Listing 4, we have eight formats that are used later as messages exchanged between
the two participants of EAC.

Listing 4: Formats section

Formats:

eac1 input(Msg, ImpData, ImpData, ImpData, ImpData) ;
eac1output(ImpData, ImpData, ImpData, ImpData, Agent,

Nonce) ;
eac2input(ImpData, Number) ;
eac2output(Nonce) ;
eac22output(Msg, Msg, Nonce) ;
eac2add i t iona l input(Msg) ;
certForm(Agent, PublicKey) ;
x59d(Agent, Nonce, PublicKey) ;

The form of each of the formats is:

FormatName(data types)

FormatName, e.g., eac1input, is a format identi�er followed by a list of data types (Msg, ImpData
...).

Every format (once declared) is considered as a new data type that can be used in other formats
declaration e.g., having the formats of Listing 4, we can declare a new format (say anotherFor-

mat) as follows:

anotherFormat(eac1 input , ImpData, Nonce) ;

in which we use eac1input as a data type to declare anotherFormat.

Formats are public in the sense that all participants can construct them or parse their content.
They are also considered disjoint in the sense that no format will be handled as another one.

4.5 Macros

This section provides abbreviations to improve readability and to prevent repetition that hap-
pens often in protocol speci�cations. Macros can be simply replaced by unfolding them in the
speci�cation wherever they occur.

Listing 5: Macros section

Macros:

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 11 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

cert(A,K,CA)=sign(inv(pk(CA)) ,certForm(A,K))
kdf(SEC, PUB, NONCE)=hash(exp(PUB, SEC) , NONCE)

Notice that a macro is formed as:

MacroName(identifiers) = message

Referring to our running example, the cert(A,K,CA) macro in Listing 5 is applying the crypto-
graphic primitive sign on a format certFrom. In macro declaration, variables on the right hand
side must appear on the left had side of the equal sign (macro variables must be bound).

We also support let statements as another abbreviation possibility that can be used in the
Actions section. We discuss let statements in more detail when we reach that section.

4.6 Knowledge

In this section we describe the initial knowledge of all participants. A participant is an agent that
directly participates in the protocol (i.e., exchange messages or perform tasks). There is no need
to specify the initial knowledge of an agent who does not directly participate in the protocol,
such as a certi�cate authority (ca) in EAC because issuing and distribution of certi�cates is not
part of EAC, and ca it is not involved in direct interactions with other participants. Listing 6
shows the initial knowledge for the two participants PCD and PICC.

Listing 6: Knowledge section

Knowledge:

PCD: PICC, PCD,cert(PCD,pk(PCD) , c a) , pk(PCD) ,
pk(ca) , inv(pk(PCD)) , g ;

PICC: PCD, PICC,cert(PICC,exp(g,sk(PICC)) , c a) ,
pk(ca) , sk(PICC) , g ;

where PCD!= ca , PICC!=ca

As one can see in Listing 6, the initial knowledge of a participant can be any message (atomic
or composed term). For each participant we give its initial knowledge in the form:

participant : knowledge;

Where knowledge is a message or comma-separated list of them. We only allow variables of
type Agent, i.e., roles. Variables of other types do not occur in the initial knowledge since they
represent values that are freshly created by the agent who �rst uses them. Note that only the
variables PCD and PICC occur in the initial knowledge and both are roles. A participant can
not have any fresh knowledge initially since fresh values is what an agent creates during message
exchange.

At the end of this section we can add constraints to roles instantiation in the form of:

where A ! = B

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 12 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

Where A and B are any participants (including the intruder i). Notice that we have two
constraints at the end of the Knowledge section of the EAC protocol in Listing 6. Having
PCD!=ca prevents PCD to be instantiated to ca in an execution.

4.7 Actions

The actions section is the core section of the protocol speci�cation. It models how di�erent
participants exchange messages in an ideal run of a protocol run de�ned by a set of actions.

Listing 7: Actions section

Actions (Main) :
[PCD]∗−>∗[PICC] : eac1input(cert(PCD,pk(PCD) , c a) ,

CertDesc , RCHAT, OCHAT, AuxData)

[PICC]∗−>∗[PCD] :eac1output(RC, CHAT, CAR,
EFC, PICC, IDpicc)

let PK_PCD=exp(g,X)

[PCD]∗−>∗[PICC] : eac2 input (NoCert , PK_PCD)

[PICC]∗−>∗[PCD] : eac2output(Rpicc)

[PCD]∗−>∗[PICC] : eac2add i t i ona l input (s i gn(inv(pk(PCD))
,x59d(PICC, Rpicc , PK_PCD)))

let PK_PICC=exp(g,sk(PICC))
let K=kdf(sk(PICC),PK_PCD, Rmac)
let Tpicc=mac(K, PK_PCD)

[PICC]∗−>∗[PCD] : eac22output(cert(PICC,PK_PICC,ca) ,
Tp icc , Rmac)

Actions are mainly message exchanging as shown in Listing 7. We also consider further ac-
tions that we call tasks including selecting structures and sub-protocol calling. We give further
explanation for di�erent types of actions in the following:

• Message exchange: A participant sending a Message to another participant. A Message

can be any term (discussed earlier in Types section). Message exchange form is:

A Channel B : Messages

Both A and B are participants. We distinguish between four di�erent types of channels:

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 13 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

1. Insecure channel: A → B : M represents the default insecure channel from A to B,
controlled by the intruder. Intruder can read, send under any sender's name, and
intercept messages.

2. Authentic channel: A •→B : M represents an authentic channel from A to B. Here
B is guaranteed that the message is sent from A (and meant for B). However, the
intruder can see the message M .

3. Con�dential channel: A→•B : M means that A has the guarantee that only the
intended receiver B can see the message M . However, B has no guarantee of authen-
ticity.

4. Secure Channel: A •→•B : M represents an authentic and con�dential channel.

5. Pseudonymous channels: [A]ψ •→•B : M and B •→• [A]ψ : M . This represents a
secure channel, but with an unauthenticated party A that acts under pseudonym ψ.
This is di�erent from a channel where the end-point A is simply not secured, i.e.,
A→•B or B •→A, because the channel is bound to pseudonym ψ. The idea is to
model channels like the ones we get from TLS without client authentication: we have
a secure line between a client and a server, but the identity of the client is not proved.
However, an intruder cannot hack into this line any more. This is crucial when the
client uses the channel for a login to authenticate itself. We also allow to drop the
notation ψ of the pseudonym if not relevant for the protocol: it then means that at
the beginning of each protocol run, each pseudonymous users picks a fresh pseudonym
to use throughout the session.

6. Mutual pseudonymous channel [A]ψ •→• [B]ϕ : M represents a secure channel with
both parties unauthenticated to each other. Each participant is under a pseudonym
(A under ψ and B under ϕ that can be both dropped as in the previous channel type).
Note that we use this channel type in our example shown in Listing 7 for all channels
between PICC and PCD. We have a card and a card reader that can be faked by the
intruder but still the intruder can not sit between them.

• Tasks: Tasks are mainly control structure actions that break the linear structure of pro-
tocols in classic AnB and database manipulation actions. Actions of this type have the
form of:

A : Task

Where A is a role and Task can be any of the following (in order of priority and signi�-
cance):

� Selection structures: We have two selection structures to change the sequential mes-
sage interchange of a protocol. The �rst one is the non-deterministic OR in which
the participant can select any of the two options unconditionally. The second type
of selection is the conditional/ deterministic if-else statements in which an agent acts
according to a condition.

� Sub-protocol call: The sub-protocol notion emphasizes speci�cation �exibility, reusabil-
ity as well as the ability to provide non-linear control �ow of protocols. Accordingly,

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 14 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

we will allow several Actions sections each per sub-protocol and one as Main. Sub-
protocols are supposed to behave like methods in programming languages. The ter-
mination of sub-protocols can be done either explicitly using return to return a value
or exit without a return value.

� Database manipulation: Including add, delete and query a database.

Tasks are not considered essential for our purposes for the time being; we plan to integrate
it to Future AnB but with less priority in implementation.

We also de�ne let statements as one can see in 7 and earlier mentioned. A let statement is a
non-parametrized abbreviation method (with no arguments as opposed to macros). It is placed
in the Actions section and provides a local abbreviation i.e., applicable on statements below it.

4.8 Goals

This section speci�es the goals that the protocol is supposed to achieve and that the veri�cation
tools should check. We have three types of goals:

• M secret of list: specifying a list of agents who are cleared to know the secret M . It
counts as an attack if the intruder i �nds out M and he is not in the list.

• B weakly authenticates A on M : If B receives the message M , he can rely on the fact
that it was really sent by A, and was meant for him.

• B authenticates A on M : Same as the weak authentication variant but a replay counts
as an attack.

Even though this list of goals is basic, there is a surprisingly large number of security problems
that can be speci�ed with just these goals.

Listing 8: Goals section

Goals:

PICC authenticates PCD on Tpicc
PCD authenticates PICC on Tpicc
Rpicc secret of PICC, PCD
K secret of PICC, PCD

Note that the �rst two goals represent the mutual authentication between PCD and PICC that
EAC is supposed to achieve.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 15 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

5 Future AnB Grammar

This section gives an overview of Future AnB Grammar. The entire EBNF grammar of Future
AnB syntax is in Appendix A.

〈Protocol〉 ::= [〈ProtocolName〉]〈Types〉[〈Mappings〉][〈Formats〉]
[〈Macros〉]〈Knowledge〉 〈Actions〉〈Goals〉

〈ProtocolName〉 ::= `Protocol'`:' 〈Ident〉`;'

〈Types〉 ::= `Types'`:'
(〈Type〉 〈Ident〉 (`,' 〈Ident〉)* `;')+

〈Type〉 ::= `Agent' | `Nonce' | `PublicKey'
| `Number' | `SymmetricKey' | `ImpData'
| `PrivateKey'| `Msg'

〈Mappings〉 ::= `Mappings'`:'
(〈Ident〉 `:'〈Type〉 (`,' 〈Type〉)* `->' 〈Type〉`;')+

〈Formats〉 ::= `Formats'`:'
(〈Ident〉 `(' 〈Ident〉(`,'〈Ident〉)* `)' = 〈Msg〉 `;')+

〈Macros〉 ::= `Macros'`:'
(〈Ident〉 `(' 〈Ident〉(`,'〈Ident〉)* `)' = 〈Msg〉 `;')+

〈Knowledge〉 ::= `Knowledge'`:'
(〈Agent〉 `:' 〈Msg〉;)+
[`where' 〈Agent〉 `!=' 〈Agent〉 (`,'〈Agent〉)*
(,〈Agent〉 `!=' 〈Agent〉 (`,'〈Agent〉)*)*]

〈Actions〉 ::= `Actions'`('`Main'`)'`:' (S)+

(`Actions('〈Type〉 〈Ident〉
`('〈Type〉 〈Ident〉 (`,'〈Type〉 〈Ident〉)* `):' (S)+)*

〈S 〉 ::= (〈Agent〉 〈Channel〉 〈Agent〉 : 〈Msg〉
| 〈Agent〉 `:' 〈Task〉 | `let' 〈Ident〉 `=' 〈Msg〉)`;'

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 16 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

〈Task〉 ::= `if'`('〈Condition〉`)'`then' 〈S 〉 `else' 〈S 〉 `fi'
| 〈S 〉 `OR' 〈S 〉

〈Goals〉 ::= `Goals'`:' 〈Goal〉+

〈Goal〉 ::= 〈Agent〉 `authenticates' 〈Agent〉 `on' 〈Msg〉
| 〈Agent〉 `weakly authenticates' 〈Agent〉 `on' 〈Msg〉
| 〈Msg〉 `secret of' 〈Agent〉 (`,'〈Agent〉)*

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 17 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

6 Prede�ned primitives

In this section we list the prede�ned primitives that are considered as keywords in Future AnB :

1. Data types: As discussed earlier in Section 4.2, we have these data types: Agent, PublicKey,
PrivateKey, Number, Nonce, SymmetricKey, ImpData, Msg. We will refer to this set as
T={Agent,PublicKey,...} later in this document.

2. Functions (public):

• Symmetric key encryption: scrypt(K,M)

• Asymmetric key encryption: crypt(K,M)

• Signing: sign(K, M)

• Exponentiation: exp(A,B)

• Hashing: hash(M)

• Message authentication code: mac(A,B)

• Multiplication: mult(A,B)

• Decryption and verifying of signatures are also public but they are not supposed
to appear in speci�cations, but are implicit in the Future AnB description. This is
shown in the semantics where the decryption operation (as well as) becomes explicit
in the execution model.

3. Mappings (private):

• pk: Maps an agent to a public key. For example pk(A) gives the public key of the
agent A.

• inv: Maps a public key to a private key. inv(pk(A)) gives the private key of A.

• shk: Maps two agents to a relation of both, it can be used to represent a key shared
between them.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 18 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

7 Semantics

Protocol speci�cation in AnB, as well as Future AnB, describes how di�erent participants behave
in an ideal protocol execution. This behaviour is de�ned by an initial state and a transition
relation on states forming a �nite-state transition system. Reachable states represent what a
participant can do, and goals are achieved only if their corresponding attack states are not be
reachable. The formal semantics of Future AnB is de�ned by translating its speci�cation into
an extension of strands that we de�ne a formal semantic for.

7.1 Message Model

The core of a protocol speci�cation in Future AnB consists of messages exchanging and more
speci�cally messages handling (parsing and composing).

A Future AnB speci�cation does not give explicit details about how participants compose or
decompose messages. In general, a participant can receive any message whether he can parse
it or not (checking messages will be discussed later). However, he can not send a message Msg
unless he is able to construct that message by these means:

• Msg is in his initial knowledge.

• He received Msg so he can forward it (we can say that Msg is in his updated knowledge).

• He derives Msg by composing or decomposing it using deduction rules based on Dolev-Yao
intruder model [9] and algebraic properties of public functions, mappings, and formats.

We formally de�ne Future AnB message model based on [8] as follows.

De�nition 1. A message model (Σc , Σd , Σf , Σm , Σi , V, T, Σ, V, ≈) consists of:

• Σc: a �nite set of prede�ned public constructor symbols with arities that are protocol inde-

pendent.

Σc = {scrypt/2, crypt/2, sign/2, mult/2, exp/2, hash/1, mac/2}

• Σd : a �nite set of prede�ned public destructor symbols with arities that are protocol inde-

pendent. The modeller can not use any element of Σd in the APS speci�cation. They are

instead introduced later by a translation into an executable program formal model used for

message parsing and checking.

Σd ⊇ {sdecrypt/2, vscrypt/2, decrypt/2, vcrypt/2, vsign/2}

• Σi : a countable set of protocol constants. Mainly user-de�ned constants but also contains

special reserved constants such as the intruder name i as well as >.

Σi ⊇ {i,>}

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 19 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

• V : a countable set of protocol variables (user-de�ned).

• Σm : a �nite set of prede�ned and user-de�ned mapping symbols with arities.

Σm ⊇ {inv/1, pk/1, shk/2}

• Σf : a �nite set of user-de�ned protocol formats symbols with arities. For every f ∈ Σf

with arity n ≥ i, we have:

� geti,f (t1, ..., tn) ∈ Σd

� verifyf (t1, ..., tn) ∈ Σd

• Σ: a countable set of all identi�ers (pre-de�ned and user-de�ned, i.e., protocol dependent

and independent).

Σ = Σc ∪ Σd ∪ Σi ∪ Σm ∪ Σf

• T : a �nite set of prede�ned data types.

T = {Agent, Nonce, Number, ImpData, PublicKey, SymmetricKey, Msg, PrivateKey}

• V: a countable set of variable symbols disjoint from Σ.

V = {X0, X1, ...}

• ≈: a congruence relation over ground terms over Σ de�ned below by a set of properties.

Σc ,Σd ,Σi ,Σm ,Σf , V,V are all pairwise disjoint. A term t over Σ is denoted by t ∈ TΣ(V).
TΣ(V) is de�ned as follows:

• t ∈ V ⇒ t ∈ TΣ(V)

• t1, .., tn ∈ TΣ(V), f ∈ Σ, f is of arity n ⇒ f(t1, .., tn) ∈ TΣ(V), note that for arity 0 we

omit braces.

• Nothing else is in TΣ(V)

A term t over Σ is a variable t ∈ V or an expression in the form f(t1, t2, .., tn) where f ∈ Σ and

the ti are terms. A ground term is a term t without variables denoted by t ∈ TΣ, i.e., V = ∅.

A labelled message tl is a term t ∈ TΣ(V) labelled by a term l ∈ TΣ(V). For a set of labelled

messages M, we de�ne the following deduction rules:

M ` ml m
l ∈M

(1)

M ` tl11 ... M ` tlnn
M ` f(t1, ..., tn)f(l1,...,ln)

f ∈ Σc ∪ Σd ∪ Σf
(2)

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 20 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

The �rst rule expresses that terms given in the initial knowledge can be deduced directly. The
second rule expresses that the deduction of messages is closed under the application of public
operations (constructors Σc and destructors Σd) as well as formats.

Finally, the we de�ne ≈ as the least congruence relation that satis�es these properties:

sdecrypt(k , scrypt(k ,m)) ≈ m (3)

vscrypt(k , scrypt(k ,m)) ≈ > (4)

decrypt(inv(k), crypt(k ,m)) ≈ m (5)

vcrypt(inv(k), crypt(k ,m)) ≈ > (6)

open(sign(k ,m)) ≈ m (7)

vsign(k , sign(inv(k),m)) ≈ > (8)

For every f ∈ Σf with arity n ≥ i we have (9) and (10) :

geti,f (f(t1, ..., tn)) ≈ ti (9)

verifyf (f(t1, ..., tn)) ≈ > (10)

proji(m1, m2, .., mn) ≈ mi (11)

exp(exp(A, B), C)) ≈ exp(exp(A, C), B)) (12)

mult(A, B) ≈ mult(B, A) (13)

mult(A, mult(B, C)) ≈ mult(mult(A, B), C) (14)

For protocol speci�cation, the modeller can not use any of Σd since they are implicitly used in
analysis but not explicitly in speci�cation.

7.2 Translation preprocessing

Before we perform translation form Future AnB to detailed strands, we perform the following
preprocessing steps:

1. Knowledge packing per participant: We specify per participant its initial knowledge. The
main part of participant knowledge is given directly from Knowledge section in the speci-
�cation. The only allowed variables in the initial knowledge are roles.

2. Fresh variables: We run a pass through the speci�cation to determine fresh variables within
it and add them to the initial knowledge of its creator participant(owner) with distinction
from other initial knowledge items. The creator/owner participant is the participant that
�rst uses that variable and thus a fresh variable has a unique owner.

3. Unfold macros and let statements: As macros and let statements are just for abbreviation
and have no semantic signi�cance, we perform a preprocessing step of unfolding macros
and let statements. i.e., we simply replace them wherever they occur in the speci�cation
with what they abbreviate.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 21 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

4. Channel preprocessing: Since we support di�erent channel types in protocol speci�cation,
we perform a channel preprocessing step in which we model channels via cryptographic
operations, e.g., signing for authentic channels, see [10].

7.3 Detailed strands

We use an extension of strands to represent the semantics. It is well suited for translating to the
input languages of many tools like AVISPA and ProVerif as well as for generating implemen-
tation. Detailed strands are based on strands of [1] and [11] with introduction to new strand
structures and extra details within strands. Detailed strands are meant to:

• Give a separate program per participant.

• Pack all required details of a protocol run from each peer view as one piece including
reasoning for message composing and parsing.

• Provide a comprehensive version for each participant for further translation to targeted
low-level languages or implementation.

In this section we give the syntax and semantics of the detailed strands based on [1], and [11].

7.3.1 Detailed strands syntax

We start with detailed strands syntax and give the structure of strands followed by a graphical
syntax. Strand textual representation is as following:

Strand0 = Knowledge Strand

Strand = Snd Msg Strand

| Rcv Msg Strand

| If Fact Strand Strand Strand

| If not Fact Strand Strand Strand

| Or Strand Strand Strand

| Check Msg Msg Strand

| Add Fact Strand

| Delete Fact Strand

| Query Fact Strand

| EOS Owner ID

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 22 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

Fact = FactSymbol(Msg)

FactSymbol = witness | contains | request |

secret | wrequest| iknows

Where Knowledge is declared by Knowledge : V 7→ TΣ(V) and represents the initial knowledge of
the strand owner. Msg is constructed as in the EBNF grammar in Appendix A. Owner denotes
unique identi�er for strand owner and ID denotes session identi�er at execution time. We have
a restriction on messages (Msg) in Query and Rcv that they may contain free variables that
will be bound. Whereas messages in Delete and Snd can not have free variables (in a sense that
one can not delete or send something that is not speci�ed), they can only use parameters and
previously bound variables. We formally de�ne fv(•) : Strand 7→ 2V and fvm(•) : Msg 7→ 2V .
As follows (we here give the most interesting cases, the others as as expected):

fvm(c) = ∅ c is constant
fvm(X) = {X} x ∈ V

fvm(f(t1, ..tn)) =
⋃i fvm(ti)

fv(Snd Msg Rest) = fvm(Msg) ∪ fv(Rest)

fv(Rcv Msg Rest) = fv(Rest) \ fv(Msg)

fv(Query Fact Rest) = fv(Rest) \ fvm(Fact)

fv(Delete Fact Rest) = fvm(Fact) ∪ fv(Rest)

In all other cases it is just as in Snd case.

We use this graphical syntax for strands for clarity in coming steps:

• Snd Msg Strand:

��
• Msg //

��
Strand

• Rcv Msg Strand:

��
• oo Msg

��
Strand

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 23 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

• If Fact Strand Strand Strand:
��

Fact

s{ #+
Strand

$,
Strand

rz
Strand

��

• If not Fact Strand Strand Strand:
��

not(Fact)

rz $,
Strand

%-
Strand

qy
Strand

��

• Or Strand Strand Strand:
��
•

rz $,
Strand

$,
Strand

rz
Strand

��

• Check Msg Msg Strand:
��

Msg == Msg

��

• Add Fact Strand:
��

+ Fact

��

• Delete Fact Strand:
��

− Fact

��

• Query Fact Strand:
��

? Fact

��

• EOS Owner SessionID:
��

EOS : Owner : SessionID

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 24 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

Note that this strand denotes the end of a strand.

7.3.2 Detailed strands semantics

As introduced in [1], a strand is a sequence of actions that a participant makes during protocol
execution. A strand re�ects the protocol from a participant view. Strands de�ne the behaviour
of participants of a protocol by means of an in�nite-state transition system de�ned by an in�nite
state and a transition relation on states. Reachable states represent what the system can do.
The initial state is represented by the set of strands for all participants and the initial knowledge
instantiated with concrete values for parameters (roles) and fresh values for the required number
of sessions. The transition relation is de�ned by these transition rules:

•{Snd Msg .Rest} ∪ Strands; M ; Facts =⇒ {Rest} ∪ Strands; M ∪ {Msg}; Facts

•{Rcv Msg .Rest} ∪ Strands; M ; Facts

=⇒ {σ(Rest)} ∪ Strands; M ; Facts if exists a substitution σ s.t . σ(Msg) ∈ M

•{OR Rest1 Rest2} ∪ Strands; M ; Facts =⇒ {Rest1} ∪ Strands; M ; Facts

•{OR Rest1 Rest2} ∪ Strands; M ; Facts =⇒ {Rest2} ∪ Strands; M ; Facts

•IF Fact RT RF .Rest} ∪ Strands; M ; Facts

=⇒ {σ(RT .Rest)} ∪ Strands; M ; Facts if exists σ. σ(Fact) ∈ Facts

•{IF Fact RT RF .Rest} ∪ Strands; M ; Facts

=⇒ {RF .Rest} ∪ Strands; M ; Facts if for all σ. σ(Fact) /∈ Facts

•{Add Fact .Rest} ∪ Strands; M ; Facts =⇒ {Rest} ∪ Strands; M ; Facts ∪ {Fact}

•{Delete Fact .Rest} ∪ Strands; M ; Facts =⇒ {Rest} ∪ Strands; M ; Facts = Facts \ {Fact}

•{Query Fact .Rest} ∪ Strands; M ; Facts

=⇒ {σ(Rest)} ∪ Strands;M ;Facts if exists σ. σ(Fact) ∈ Facts

•{Check s t .Rest} ∪ Strands; M ; Facts =⇒ {Rest} ∪ Strands;M ;Facts

Goals are added to strands as facts and attack rules are appended to the transition rules ac-
cordingly. Since we have three di�erent types of goals that can be speci�ed in the Goals section
we describe each one and what to append in strands and in transition rules:

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 25 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

1. A authenticates B on Msg: At the end of the A's strand we add the fact request(A,
B, Msg, GoalID, SessionID) s.t., A,B, and Msg are derived directly from the goal.
GoalID is a unique constant identi�es the goal message to avoid confusing it with other
goals. And �nally SessionID is a variable for session identi�er in execution time.On B's
side we add the fact witness(XB,XA,Msg ,XMsg). This fact must be added once B is able
to construct Msg, but we add it at the beginning of B's strand and later check the strand
to relocate it properly. For transition rules, we add two rules: The �rst for authentication
and the other for detecting replay. The �rst rule is as follows:

request(A,B,Msg,G,S).not(witness(B,A,Msg,G,S)).A6≈ i=⇒ attack

The reply detection rule depends on S as follows:

request(A,B,Msg,G,S).request(A,B,Msg,G,S'). A 6≈i.S 6≈S'=⇒ attack

2. A weakly authenticates B on Msg: The same as previous one, but without the replay
detection rule.

3. Msg secret of Ai: Having that Ai is a list of agents, we add at the end of each agent in
the list Ai the facts:

secret(Msg,Ai).contains(Ai, A1)....contains(Ai, An) where Msg is the secret, A1...An are
the agents in the list Ai.

We add this transition rule to describe attack:

secret(Msg, Ai). iknows(Msg). not(contains(Ai,i)) =⇒ attack

7.3.3 Translation Future AnB to detailed strands

We de�ne the function trStr : Agent,Agent,Action → Strand, it translates from Future AnB

speci�cation to strands. A typical application of trStr is of the form trStr(A,B,Action) where
A is the participant that the strand is being generated for (we call it strand owner since each
participant has a strand), B is the active participant (initially the participant sending the �rst
message in Actions section and then the one receiving last message sent), and Action is the
Future AnB sequence of actions to be translated. trStr is recursively de�ned as follows:

1. In this case we are generating the strand of A and A is active and sending message msg
to B we have:

trStr

(
A,A,

A→ B : msg
Rest

)
= Snd msg

trStr (A,B , Rest)

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 26 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

2. This is a generic case in which we are generating the strand of A. B is active, and C sends
a message msg to D as follows.

trStr

(
A,B,

C → D : msg
Rest

)
= error

Unless B 6= C (regardless A and D) then this causes an error; since the participant is
taking the action (C) is not the active participant (B). This case can be extended to tasks
as well (having the same constraint of B 6= C) as follows:

trStr

(
A,B,

C : task
Rest

)
= error

3. We are translating for A, B is the active participant and sending msg to A.

trStr

(
A,B,

B → A : msg
Rest

)
= Rcv msg

trStr(A,A,Rest)

4. We are translating for A, B is the active participant sending msg for another participant
C.

trStr

(
A,B,

B → C : msg
Rest

)
= trStr(A,C,Rest)

5. If-else statement, we translate for A that is active and making a conditional selection
(if-else).

trStr

A,A,
A : if(fact)
then RT
else RF fi

Rest

 = IF (fact) trStr(A,A,RT) trStr(A,A,RF)

trStr(A,A,Rest)

6. If-else statement where we translate for the participant that is not making the decision,
i.e., A is active but we generate the strand of B. Note that it is translated to an OR
selection denoting that since A is making the selection, B is open to any choice A may

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 27 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

choose.

trStr

B,A,
A : if(fact)
then RT
else RF fi

Rest

 = OR trStr(B,A,RT) trStr(B,A,RF)

trStr(B,A,Rest)

7. OR selection statement

trStr

A,A,
A : ChoiceL

OR
ChoiceR
Rest

 = OR trStr (A,A,ChoiseL) trStr (A,A,ChoiseR)

trStr (A,A,Rest)

8. OR selection statement

trStr

A,A,
A : ChoiceL

OR
ChoiceR
Rest

 = OR trStr (B ,A,ChoiseL) trStr (B ,A,ChoiseR)

trStr (B ,A,Rest)

9. In case of no more actions to translate

trStr(A,B, ε) = EOS A SessionID

Where SessionID is a unique identi�er for the session.

7.3.4 EAC in strands

Follows a preliminary translation form Future AnB speci�cations to plain strands (non-detailed
as one can see shortly), The �rst block gives the initial knowledge of the strand owner and we
use semi-colon to separate fresh knowledge created by the owner.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 28 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

PCD:
PICC, PCD, sign(inv(pk(ca)),certForm(PCD,pk(PCD)), pk(PCD), pk(ca),
inv(pk(PCD)), g; CertDesc, RCHAT, OCHAT, AuxData, X, NoCert

��

witness(PCD,PICC,mac(hash(exp(exp(g,X), sk(PICC)))

��
eac1input(sign(inv(pk(ca)),certForm(PCD,pk(PCD))), CertDesc,RCHAT, OCHAT, AuxData)

• //

��
eac1output(RC, CHAT, CAR, EFC, PICC, IDpicc)

• oo
��

•
eac2input(NoCert, exp(g,X))

//

��

• oo
eac2output(Rpicc)

��
eac2additionalinput(sign(inv(pk(PCD)), x59d(PICC, Rpicc, exp(g,X))))

• //

��
eac22output(sign(inv(pk(ca)),certForm(PICC,exp(g,sk(PICC)))),

• oo
mac(hash(exp(exp(g,X), sk(PICC)), Rmac), exp(g,X)), Rmac)

��

request(PCD,PICC,mac(hash(exp(exp(g,X), sk(PICC)), Rmac))

��

secret(exp(exp(g,X), sk(PICC)),PCD,PICC)

��

secret(Rpicc,PCD,PICC)

��
EOS : PCD : SessionID

7.3.5 Making strands detailed

This translation aims to �nd how participants construct or destruct messages and how to check
messages. To show how di�erent messages are dealt with we translate a transition relation trex:
strands → strands de�ned for message exchanging (send and receive) as follows:

• Sending a message : We �rst introduce composeK that maps from terms to terms, more

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 29 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

precisely
composeK : TΣ(V) 7→ TΣ(V)

Then we de�ne trex in the case of sending a message:

trex(Snd m S) = Snd(composeK(m)); trex(S)

Before sending a message, a function composeK is applied on that message to explain how
this message is composed according to agent's knowledge K; the function composeK is
de�ned as follows:

composeK(t) =


xi if [xi 7→ t] ∈ K
f(composeK(t1), ..., composeK(tn)) if t ≈ f(t1, ..., tn)
⊥ otherwise

• Receiving a message:
trex(Rcv m S) = Rcv Xi;ϕ; trex(S)

Once a message is received it is bound to Xi /∈ K. Then a procedure ANA(K) is run
to update K to K̄ and produce ϕ (new checks, e.g., vsign(k, sign(inv(k),M))== >).
ANA(K) is repeated until we reach a �xed point, i.e., until no more analysis is possible.

Updating K:
(K̄, ϕ) = ANA(K[Xi 7→ m])

We de�ne ANA(K) according to the di�erent cases of received messages:

1. Asymmetric encrypted message: An asymmetric encrypted message has the form of
crypt(k,m). ANA(K):

(1)a− Find a key [Xj , inv(k)]
?
∈ K

if yes Xj
(1)b− add to the checks ϕ a new check : vcrypt(Xj ,Xi) == >
(1)c− Xk 7→ decrypt(Xj ,Xi), s.t. Xk /∈ K.
(2)Check if any X ∈ K can be generated in a different way .
if yes add it to the checks ϕ

2. Symmetric encrypted message: Symmetric encrypted message has the form of scrypt(k,m).
ANA(K):

(1)a− Find a key [Xj , k]
?
∈ K

if yes Xj
(1)b− add to the checks ϕ a new check : vscrypt(Xj ,Xi) == >
(1)c− Xk 7→ descrypt(Xj ,Xi), s.t. Xk /∈ K.
(2)Check if any X ∈ K can be generated in a different way .
if yes add it to the checks ϕ

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 30 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

3. Signed message: A signed message has the form of sign(inv(k),m). ANA(K):

(1)a− Find a key [Xj , k]
?
∈ K

if yes Xj
(1)b− add to the checks ϕ a new check : vsign(Xj ,Xi) == >
(1)c− Xk 7→ open(Xj ,Xi), s.t. Xk /∈ K.
(2)Check if any X ∈ K can be generated in a different way .
if yes add it to the checks ϕ

4. Formatted message: A message that is enclosed with a format f) with a form of
f(t1, ..tn). We also consider concatenating represented by a comma separated list of
messages (the way it is composed) with proji for decomposing it. We consider it as
special case of formats although we do not encourage its use as mentioned earlier.

ANA(K):

(1)a− add to the checks ϕ a new check : verifyf (Xi) == >
(1)b− Xk 7→ get1 (Xi), ... Xk+n 7→ getn(Xi), s.t. Xk, ...Xk+n /∈ K.
(2)Check if any X ∈ K can be generated in a different way .
if yes add it to the checks ϕ

5. A non-parsable message: A message that can not be decomposed any further. This
case includes:

� Atomic messages such as constants and variables

� Hashed messages

� Message authentication codes

� Exponentiation

� Multiplication

All those messages are not supposed to be decomposed, but they may give the ability
for other messages to be further decomposed. The analysis ANA(K) will be:

Check if any X ∈ K can be generated in a different way .
if yes add it to the checks ϕ

We de�ned trex for message exchanging for this time and leave other case for future extensions

7.3.6 EAC in detailed strands

Here we show the detailed strand for the participant PCD.

PCD:
X1 7→ PICC, X2 7→ PCD, X3 7→ sign(inv(pk(ca)), certForm(PCD, pk(PCD))),
X4 7→ pk(PCD), X5 7→ pk(ca) X6 7→ inv(pk(PCD)), X7 7→ g;
X8 7→ CertDesc, X9 7→ RCHAT, X10 7→ OCHAT, X11 7→ AuxData,
X12 7→ X, X13 7→ NoCert

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 31 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

��

witness(X2,X1,..)

��

•
eac1input(X3, X8,X9, X10, X11)

//

��

• oo
X14 7→ eac1output(RC, CHAT, CAR, EFC, PICC, IDpicc)

��

verifyeac1output(X14) == >
��

X15 7→ get1 (X14), X16 7→ get2 (X14), X17 7→ get3 (X14), X18 7→
get4 (X14), X19 7→ get5 (X14), X20 7→ get6 (X14)

��

•
eac2input(X13,exp(X7,X12))

//

��

• oo
X21 7→eac2output(RPICC)

��

verifyeac2output(X21) == >
��

X22 7→ get1 (X21)

��

•
eac2additionalinput(sign(X6,x59d(X1,X22,exp(X7,X12))))

//

��
X23 7→ eac22output(sign(inv(pk(ca)), certForm(PICC, exp(g, sk(PICC)))),

• oo
mac(hash(exp(exp(g,X), sk(PICC)), Rmac), exp(g,X)), Rmac)

��

verifyeac22output(X23) == >
��

X24 7→ get1 (X23),X25 7→ get2 (X23),X26 7→ get3 (X23),X27 7→ get4 (X23)

��

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 32 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

��
vsign(X5 ,X24) == >
X28 7→ open(X24)
X29 7→ get1(X28)
X30 7→ get2(X28)

��
X26 == exp(X7 ,X12)
X29 == X1
X25 == mac(hash(exp(X30,X12),X27)

��

request(X2,X1,..)

��

secret(..,X2,X1)

��

secret(.., X2,X1)

��
EOS

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 33 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

8 Generating implementation

The implementation generated from speci�cation is divided into two categories, �rst one is
generating programs per protocol participant (a program for PCD and another for PICC). The
second is to generate a class per format in the Formats section, e.g., eac1input. We demonstrate
how the generated implementation is supposed to be.

8.1 Participants programs

In Listing 9 we show roughly how a Java program for a participant (PCD) of the EAC protocol
may look like. One can notice how this code is a direct mapping from detailed strands of PCD
shown in the previous section. Note also that fact related to goals (secret, witness, etc.) are not
present in the generated code since they are not relevant to it.

Listing 9: PCD Java code sketch

void progPCD(Agent x1 , Agent x2 , Number x3 ,
PublicKey x4 , PublicKey x5 , PrivateKey x6 ,
Number x7 , ImpData x8 , ImpData x9 ,
ImpData x10 , ImpData x11 , Number x12 ,
Number x13)

{
s end(eac1 input (x3 , x8 ,x9 ,x10 ,x11) . encode()) ;
S t r ing x14=recv () ;
i f (! v e r i f y eac1output (x14)) throw formatExcept ion(. . .) ;
eac1output x14f=new eac1output(x14) ;
S t r ing x15=x14f . ge t1 () ;
S t r ing x16=x14f . ge t2 () ;
S t r ing x17=x14f . ge t3 () ;
S t r ing x18=x14f . ge t4 () ;
S t r ing x19=x14f . ge t5 () ;
S t r ing x20=x14f . ge t6 () ;
s end(eac2 input (x13 , exp(x7,x12)) . encode()) ;
S t r ing x21=recv () ;
i f (! v e r i f y eac2output (x21)) throw formatExcept ion(. . .) ;
eac2output x21f=new eac2output(x21) ;

S t r ing x22=x12f . ge t1 () ;
s e nd (e a c 2 add i t i o n a l i npu t (s i g n (x 6 ,

x59d(x1 ,x22 , exp(x7 ,x12)))) . encode()) ;
S t r ing x23=recv () ;
i f (! v e r i f y eac22output (x23)) throw formatExcept ion(. . .) ;
eac22output x23f=new eac22output(x23) ;

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 34 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

St r ing x24 = x23f . ge t1 () ;
S t r ing x25 = x23f . ge t2 () ;
S t r ing x26 = x23f . ge t3 () ;
S t r ing x27 = x23f . ge t4 () ;
i f (! v s i gn (x5 ,x24)) throw s ignatureExcept i on(. . .) ; ;
S t r ing x28=open(x5,x24) ;
S t r ing x29 = x28 . ge t1 () ;
S t r ing x30 = x28 . ge t2 () ;
i f (! (x26==exp(x7,x12))) throw checkExcept ion(. . .) ;
i f (! (x29==x1)) throw checkExcept ion(. . .) ;
i f (! (x25==mac(hash(exp(x30,x12) ,x12))) throw checkExcept ion(. . .) ;
}

8.2 Formats classes

For each format in Formats section we generate a Java class that implements the following
methods:

• A constructor for abstract syntax.

• A constructor that gets a plain text (string) in concrete syntax and parses it, e.g., com-
plaining if required elements are missing or the message is not well-formed.

• A method encode to �pretty-print� the object into concrete syntax.

• A function geti() for every element Xi of the object.

We here give Java-like class sketch for certForm format of EAC protocol base on its declaration
in Formats section (certForm(Agent, PublicKey);)

c l a s s certForm
{

pr i va t e Agent A;
p r i va t e PublicKey PK;

pub l i c certForm(Str ing XML)
{

// parse XML f i e l d s in a p l a i n text in to
// certForm data member v a r i a b l e s A and PK

}

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 35 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

pub l i c certForm(Agent A, PublicKey PK){
t h i s .A = A;
t h i s .PK = PK;
// May conta in f i l t e r s to prevent
// i n j e c t i o n at tacks

}

pub l i c S t r ing encode() {
return "<certForm> <agent>" + A. t oS t r i n g ()+
"</agent> <publ ickey>" + PK. t oS t r i n g ()+
"</publ ickey> </certForm>" ;

}

pub l i c Nonce ge t1 () {return A;}
pub l i c PublicKey ge t2 () {return PK;}
pub l i c bool v e r i f y c e r tFo rm(St r i ng S)
{ // v e r i f i e s if S can be parsed in to vertForm format
}

}

The format's class generation can be connected to its corresponding concrete structure driven
from instance from XML or XSD �le (correspondence by similar naming maybe).

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 36 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

9 The AVISPA Intermediate Format (IF)

In this section we give an overview of IF and the signi�cance of translating protocol speci�cation
in Future AnB to it. IF [3] was developed within the AVISPA project as the common input
language for the mentioned AVISPA tools OFMC [7], SATMC [12], and CL-AtSe [13]. It is
designed to be actually independent of particular methods, but it is somewhat biased towards
model-checking.

The IF speci�cation of a protocol describes an in�nite-state transition system by: an initial state,
a transition relation, and a set of attack states. Every state is a �nite set of facts. Examples
of these facts are state_role(msgs) that describes the current local state of an honest agent in
a given protocol role; iknows(m) as before to denote that the intruder knows m; and there are
other facts for describing the goals.

The initial state contains the initial local state for each honest agent and session, as well as
the initial intruder knowledge. The transition relation is given by conditional rewrite rules on
states. These rules are of the form

L|Cond = [V]⇒ R

This rule works as follows:

• L is a set of facts that has to be true in the current state for the rule to be applicable.

• Cond is a set of conditions like equalities and inequalities of terms in L that also have to
be true.

• V is a set of variables; these are used when agents create fresh (random/unpredictable)
values.

• R is a set of new facts to replace L when applying the rule.

Goals correspond to attack state, and a protocol achieves a goal if and only if the attack state
corresponds to that goal is not reachable. state-transition systems we can formalize. We leave the
de�nition of the translation function from labelled strands to IF speci�cation for abbreviation.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 37 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

10 Conclusion

We introduced an APS language, Future AnB, that extends AnB with basic extensions we found
essential for eID protocol speci�cation and veri�cation. We used EAC protocol as a running
example through this document. We presented the syntax of our languages in EBNF and de�ned
a semantics for our language by de�ning a translation to strands that we de�ned a semantics
for. From the intermediate stage of detailed strands we demonstrated how generated Java imple-
mentation may look like and we also introduced an example of a format class in Java. We also
de�ned a translation from our intermediate stage of detailed strands to IF speci�cation. We also
pointed out some possible future extensions such as sub-protocols and database manipulation.
We have already a prototype implementation and we plan to extend it based on what we de�ned.

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 38 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

A Future AnB Grammar in EBNF

〈Protocol〉 ::= [〈ProtocolName〉]〈Types〉[〈Mappings〉][〈Formats〉]
[〈Macros〉]〈Knowledge〉 〈Actions〉〈Goals〉

〈ProtocolName〉 ::= `Protocol'`:' 〈Ident〉`;'

〈Types〉 ::= `Types'`:'
(〈Type〉 〈Ident〉 (`,' 〈Ident〉)* `;')+

〈Type〉 ::= `Agent' | `Nonce' | `PublicKey'
| `Number' | `SymmetricKey' | `ImpData'
| `PrivateKey'| `Msg'

〈Mappings〉 ::= `Mappings'`:'
(〈Ident〉 `:'〈Type〉 (`,' 〈Type〉)* `->' 〈Type〉`;')+

〈Formats〉 ::= `Formats'`:'
(〈Ident〉 `(' 〈Ident〉(`,'〈Ident〉)* `)' = 〈Msg〉 `;')+

〈Macros〉 ::= `Macros'`:'
(〈Ident〉 `(' 〈Ident〉(`,'〈Ident〉)* `)' = 〈Msg〉 `;')+

〈Knowledge〉 ::= `Knowledge'`:'
(〈Agent〉 `:' 〈Msg〉;)+
[`where' 〈Agent〉 `!=' 〈Agent〉 (`,'〈Agent〉)*
(,〈Agent〉 `!=' 〈Agent〉 (`,'〈Agent〉)*)*]

〈Actions〉 ::= `Actions'`('`Main'`)'`:' (S)+

(`Actions('〈Type〉 〈Ident〉
`('〈Type〉 〈Ident〉 (`,'〈Type〉 〈Ident〉)* `):' (S)+)*

〈S 〉 ::= (〈Agent〉 〈Channel〉 〈Agent〉 : 〈Msg〉
| 〈Agent〉 `:' 〈Task〉 | `let' 〈Ident〉 `=' 〈Msg〉)`;'

〈Channel〉 ::= `->'|`*->'|`->*'|`*->*'

〈Task〉 ::= `if'`('〈Condition〉`)'`then' 〈S 〉 `else' 〈S 〉 `fi'
| 〈S 〉 `OR' 〈S 〉

〈Goals〉 ::= `Goals'`:' 〈Goal〉+

〈Goal〉 ::= 〈Agent〉 `authenticates' 〈Agent〉 `on' 〈Msg〉
| 〈Agent〉 `weakly authenticates' 〈Agent〉 `on' 〈Msg〉

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 39 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

| 〈Msg〉 `secret of' 〈Agent〉 (`,'〈Agent〉)*

〈Condition〉 ::= 〈Msg〉`=='〈Msg〉 | 〈Msg〉`!='〈Msg〉

〈Msg〉 ::= 〈Ident〉 | (〈Sgmac〉|〈Sgmam〉) `('〈Msg〉`)'

〈Agent〉 ::= 〈Ident〉 | `i'

〈Ident〉 ::= 〈Vars〉|〈Consts〉

〈Sgmac〉 ::= `scrypt'|`crypt'|`sign'|`mult'|
`exp'|`hash'|`mac'

〈Sgmam〉 ::= `inv'|`pk'|`shk'

〈Caps〉 ::= [AZ]

〈Smalls〉 ::= [az]

〈Vars〉 ::= 〈Caps〉 (〈Alphanum〉 |`-'|`_')*

〈Consts〉 ::= 〈Smalls〉 (〈Alphanum〉 |`-'|`_')*

〈Alpha〉 ::= 〈Caps〉|〈Smalls〉

〈Alphanum〉 ::= 〈Alpha〉 [09]

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 40 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

B EAC protocol speci�cation in Future AnB

In here we show complete speci�cation of EAC.

Listing 10: EAC

Protocol: EAC
Types:

Agent PCD, PICC,ca ;
Nonce IDp i c c , Rpicc , Rmac ;
Number X, g ;
ImpData CertDesc , RCHAT, OCHAT, AuxData, RC, CHAT,

CAR, EFC, NoCert ;
Mappings:

pk : Agent −> PublicKey ;
i n v : PublicKey−> PrivateKey ;
sk : Agent −> Exponent ;

Formats:

eac1 input(Msg, ImpData, ImpData, ImpData, ImpData) ;
eac1output(ImpData, ImpData, ImpData, ImpData, Agent, Nonce) ;
eac2input(ImpData, Number) ;
eac2output(Nonce) ;
eac22output(Msg, Msg, Nonce) ;
eac2add i t iona l input(Msg) ;
certForm(Agent, PublicKey) ;
x59d(Agent, Nonce, PublicKey) ;

Macros:

cert(A,K,CA)=sign(inv(pk(CA)) ,certForm(A,K))
kdf(SEC, PUB, NONCE)=hash(exp(PUB, SEC) , NONCE)

Knowledge:

PCD: PICC, PCD,cert(PCD,pk(PCD) , c a) , pk(PCD) ,
pk(ca) , inv(pk(PCD)) , g ;

PICC: PCD, PICC,cert(PICC,exp(g,sk(PICC)) , c a) , pk(ca) ,
sk(PICC) , g ;

where PCD!= ca , PICC !=ca ;

Actions(Main) :
[PCD]∗−>∗[PICC] : eac1input(cert(PCD,pk(PCD) , c a) , CertDesc ,

RCHAT, OCHAT, AuxData)

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 41 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

Shaping the Future of Electronic Identity
Future AnB : The projected APS Language of FutureID

[PICC]∗−>∗[PCD] : eac1output(RC, CHAT, CAR, EFC, PICC, IDpicc)

let PK_PCD=exp(g,X)

[PCD]∗−>∗[PICC] : eac2 input(NoCert , PK_PCD)

[PICC]∗−>∗[PCD] : eac2output(Rpicc)

[PCD ∗−>∗[PICC] : eac2add i t iona l input(s ign(inv(pk(PCD)) ,
x59d(PICC, Rpicc , PK_PCD)))

let PK_PICC=exp(g,sk(PICC))
let K=kdf(sk(PICC),PK_PCD, Rmac)
let Tpicc=mac(K, PK_PCD)

[PICC]∗−>∗[PCD] : eac22output(cert(PICC,PK_PICC,ca) , Tp icc ,
Rmac)

Goals:

PICC authenticates PCD on Tpicc
PCD authenticates PICC on Tpicc
Rpicc secret of PICC, PCD
K secret of PICC, PCD

SP/WP: SP4/WP42.3 Deliverable: D42.3 Page: 42 of 42
Reference: LiveLink Dissimination: PU Version 1.0 Status: Final

https://dms-prext.fraunhofer.de/livelink/livelink.exe/overview/3236403

	Executive Summary
	Document information
	Contributors
	History
	Table of Contents
	List of References

	Introduction
	Protocol specification structure
	Protocol
	Types
	Mappings
	Formats
	Macros
	Knowledge
	Actions
	Goals

	Future AnB Grammar
	Predefined primitives
	Semantics
	Message Model
	Translation preprocessing
	Detailed strands
	Detailed strands syntax
	Detailed strands semantics
	Translation Future AnB to detailed strands
	EAC in strands
	Making strands detailed
	EAC in detailed strands

	Generating implementation
	Participants programs
	Formats classes

	The AVISPA Intermediate Format (IF)
	Conclusion
	Future AnB Grammar in EBNF
	EAC protocol specification in Future AnB

