

WP31 - Interface Device Service

D31.2 - Interface and Module Specification and

Documentation

Related SP / WP SP3 / WP31 Document Reference D31.2

Related Deliverable(s) D22.x Dissemination Level PU

Lead Participant TUD Lead Author Moritz Horsch

Contributors

Moritz Horsch (TUD),
Pouyan Sepehrdad (TUD),
Christoph Busold (TUD),
Tobias Wich (ECS),
Detlef Hühnlein (ECS),
Frank-Michael Kamm (G&D),
Daniel Albert (G&D),
Detlef Houdeau (IFAG),
Peter Lipp (TUG),
Christof Rath (TUG)

Reviewers
Jan Camenisch (IBM),
Thomas Groß (UNEW)

This document is issued within the frame and for the purpose of the FutureID project. This project has received funding from the

European Unions Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 318424

This document and its content are the property of the FutureID Consortium. All rights relevant to this document are determined

by the applicable laws. Access to this document does not grant any right or license on the document or its contents. This

document or its contents are not to be used or treated in any manner inconsistent with the rights or interests of the FutureID

Consortium or the Partners detriment and are not to be disclosed externally without prior written consent from the FutureID

Partners.

Each FutureID Partner may use this document in conformity with the FutureID Consortium Grant Agreement provisions.

Document Identification

Date 01.05.2013

Status Final

Version 1.0

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 1 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

Abstract

The FutureID project builds a comprehensive, flexible, privacy-aware and ubiquitously

usable identity management infrastructure for Europe. It integrates existing eID technology,

trust infrastructures, emerging federated identity management services, and modern

credential technologies. It creates a user-centric system for the trustworthy and accountable

management of identity claims.

One important aspect of achieving that goal is to support existing credentials like smart

cards, secure elements, and hardware/software tokens. The Interface Device (IFD) service

provides a common interface for communication to such credentials. Therefore, users,

developers, and applications must not consider how such credentials are integrated or

addressed. The IFD abstracts from the specific interfaces and physical properties like

contactless interfaces. This provides platform independency and interoperability for

applications.

The IFD interface and module specification focus on desktop environments supporting

PC/SC [1] and mobile environments using Android [2] devices equipped with Universal

Serial Bus (USB) [3], Near Field Communication (NFC) [4] [5], and the Open Mobile API [6].

Mobile Trusted Module (MTM) and Trusted Platform Module (TPM) are not considered in the

IFD service. MTM are currently not implemented by any devices and TPM does not fit into

the ISO/IEC 7816 [7] based architecture of the IFD.

As depicted in the Figure above the IFD provides an Application Programming Interface

(API) to access the service. The IFD includes a Common module which contains generic

data structures and provides convenience functions for applications. The Protocol API

provides an interface for protocols to establish a secure channel between the IFD and

connected devices. The Smart Card Interface Input Output Application Programming

Interface (SCIO API) provides an interface for common smart card operations.

The IFD API is based on ISO/IEC 24727-4 [8] and TR-03112-6 [9], because they are . The

functions of the IFD service for the FutureID client mainly equal to the TR-03112

specification. Only a few additions are made to fulfill the requirements and archive the

desired functionality.

Protocol API

FutureID IFD API

Common

SCIO API

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 2 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

Document Information

History

Version Date Author Changes

0.1 19.11.2012 Moritz Horsch Added section introduction

0.11 14.02.2013 Moritz Horsch Added section interfaces specification

0.12 01.02.2013 Moritz Horsch Added section architecture

0.13 18.02.2013 Moritz Horsch Added section requirement

0.14 28.02.2013 Moritz Horsch Added section protocol functions

0.15 04.03.2013 Moritz Horsch Added section protocols

0.16 07.03.2013 Moritz Horsch Added section proxy support

0.2 22.03.2013 Moritz Horsch Updated changes from Tobias Wich, Frank-
Michael Kamm, and Daniel Albert

0.21 22.03.2013 Moritz Horsch Added section documentation

0.22 25.03.2013 Moritz Horsch Added section abstract

0.23 26.03.2013 Moritz Horsch Added section conclusion

0.24 03.04.2013 Moritz Horsch Updated changes from Detlef Hühnlein

0.25 04.04.2013 Moritz Horsch Updated changes from Detlef Houdeau

0.26 08.04.2013 Moritz Horsch Updated changes from Pouyan Sepehrdad and

Christoph Busold

0.27 18.04.2013 Moritz Horsch Added section limitations

0.3 19.04.2013 Moritz Horsch Finalized document for review

0.4 29.04.2013 Moritz Horsch Updated changes from Jan Camenisch

0.5 30.04.2013 Moritz Horsch Updated changes from Thomas Groß

1.0 01.05.2013 Moritz Horsch Finalized document

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 3 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Abstract 1

Document Information 2

Table of Contents 3

1. Introduction 5
1.1 Scope 5
1.2 Outline 5
1.3 Terminology 6

 Key Words 6 1.3.1
 Abbreviations and Notations 6 1.3.2

2. Preliminaries 7
2.1 MTM 7
2.2 TPM 7
2.3 Programming language 7
2.4 Platforms 7
2.5 Bindings 7

3. Architecture 8
3.1 IFD API 9
3.2 Protocol API 9
3.3 SCIO API 10
3.4 Platforms 10

 Desktop Environment 10 3.4.1
 Mobile Environment 11 3.4.2

3.5 Proxy Support 12
 Architecture 12 3.5.1
 Fundamentals 13 3.5.2
 Implementation 14 3.5.3

4. Interface Specification 16
4.1 IFD API 16

 Card terminal functions 16 4.1.1
 Card functions 16 4.1.2
 User interaction functions 17 4.1.3
 IFD-Callback-Interface for card terminal events 17 4.1.4
 Protocol functions 18 4.1.5

4.2 Protocol API 21
 Protocol 21 4.2.1
 ProtocolFactory 21 4.2.2

4.3 SCIO API 21

5. Protocols 22
5.1 Password Authenticated Connections Establishment (PACE) 22

6. Limitations 24
6.1 GetIFDCapabilities 24
6.2 BeginTransaction / EndTransaction 24
6.3 Transmit 24

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 4 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

7. Documentation 25
7.1 IFD API 25
7.2 Open Mobile API 25
7.3 PC/SC 25
7.4 SICCT 25
7.5 Java Smart Card I/O 25

8. Conclusion 26

9. Bibliography 27

A. Appendix 29
A.1 XML Definitions 29
A.1.1 EstablishChannel 29
A.1.2 DestroyChannel 29
A.1.3 DIDAuthenticationDataType 30
A.1.4 PACEInputType 30
A.1.5 PACEOutputType 30
A.2 Communication Handles 31

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 5 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

1. Introduction

1.1 Scope

The FutureID project builds a comprehensive, flexible, privacy-aware and ubiquitously

usable identity management infrastructure for Europe. It integrates existing eID technology,

trust infrastructures, emerging federated identity management services, and modern

credential technologies. It creates a user-centric system for the trustworthy and accountable

management of identity claims.

One important aspect of achieving that goal is to support existing credentials like smart

cards, secure elements, and hardware/software tokens. The Interface Device (IFD) service

provides a common interface for communication to such credentials. Therefore, users,

developers, and applications must not consider how such credentials are integrated or

addressed. The IFD abstracts from the specific interfaces and physical properties like

contactless interfaces. This provides platform independency and interoperability for

applications.

The scope of this document is to provide an interface and module specification as well as a

documentation of the IFD service of the FutureID client according to the requirements

described in D31.1 [10].

1.2 Outline

This document is structured as follows: Section Error! Reference source not found.

considers the requirements from deliverable D31.1 [10]. Section 3 describes the architecture

of the IFD service concerning the desktop and mobile environment. Section 4 specifies the

interface of the IFD service. Section 5 focuses on the integration of protocols in the IFD

architecture. Section 6 describes limitations regarding the Open Mobile API. Section 7

provides a list of references for further documentation of the IFD service and Section 8

concludes the interface and module specification.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 6 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

1.3 Terminology

 Key Words 1.3.1

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in RFC 2119 [11].

 Abbreviations and Notations 1.3.2

APDU Application Protocol Data Unit

API Application Programming Interface

BIOS Basic Input/Output System

CAN Card Access Number

CAR Certification Authority Reference

CCID Circuit(s) Cards Interface Devices

CHAT Certificate Holder Authorization Template

IFD Interface Device

JSR Java Specification Request

MRZ Machine Readable Zone

MTM Mobile Trusted Module

NFC Near Field Communication

PACE Password Authenticated Connections Establishment

PC/SC Personal Computer/Smart Card

PIN Personal Identification Number

PUK Personal Unblocking Key

RFC Request for Comments

SAL Service Access Layer

SCIO Smart Card Interface Input Output

SICCT Secure Interoperable Chip Card Terminal

TEE Trusted Execution Environment

TPM Trusted Platform Module

URI Uniform Resource Identifier

USB Universal Serial Bus

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 7 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

2. Preliminaries

Based on the requirements from the deliverable D31.1 [10] some design and architecture

decisions were made, which are described in the following Section. This Section clarifies

why certain requirements are not considered and mentions some preliminaries for the

interface and module specification of the IFD service.

2.1 MTM

We do not take MTM [12] into account, because currently none of the existing mobile

devices implement this specification. It is also not expected, that this configuration would be

implemented in the near future in Europe.

2.2 TPM

TPM [13] is specified for desktop environments. Round about 70 to 80% of the current sold

computer, notebooks etc. are equipped with TPMs. The TPM hardware module is inactive by

default and must be activated through the BIOS. Therefore, we can only assume a small

amount of accessible TPMs in practice.

Furthermore, the TPM uses different interfaces and data structures in comparison to APDU-

based smart cards according to ISO/IEC 7816 [7]. Hence, we will not include the TPM into

the IFD architecture. The TPM should be put in a separate component located at the same

level as the IFD and therefore directly accessible by the eID service or on top of the eID

service. Hence, the integration of the TPM should be considered in WP 3.2 and WP 3.5.

2.3 Programming language

Implementations in Task 31.3 and 31.4 will be done in Java. The description of the IFD

service in this document, in particular the architecture in Section 3, may focus on a Java

implementation. Nevertheless, the specification of the IFD interface in Section 4 will be

platform-independent and can be implemented by any programming language.

2.4 Platforms

We focus on desktop environments supporting PC/SC [1] and mobile environments using

Android [2] supporting USB [3], NFC [4] [5], and the Open Mobile API [6].

2.5 Bindings

The IFD service will neither provide an implementation of SOAP [14] and PAOS [15] nor a

specific interface for such protocols. The IFD will provide a common interface that can be

implemented by any programming languages. Task 31.3 will provide a Java-based

implementation of the IFD interface. Transport protocols based on SOAP, PAOS or REST

should be supported by the Dispatcher, which will be developed in WP 3.6.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 8 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

3. Architecture

This Section provides a detailed description of the architecture of the IFD service. Details

about the bindings, device interfaces, and proxy functionality are described in the

corresponding subsections.

As described in deliverable D31.1 [10] the IFD service should provide a generalized interface

for smart cards and card terminals based on ISO/IEC 27427-4 [8] and TR-03112-6 [9]. To

provide interoperability we adopt the functions from TR-03112-6 and do not change any

functions. Additional functionality like the support of protocols, through a trusted channel can

be established, are realised by adding new functions. This so-called IFD Application

Programming Interface (API) provides a generalized interface for other application to simple

access card terminals, smart cards, and secure elements. As depicted in Figure 1 the IFD

API is located on top of the IFD architecture. The functions of the IFD API are described in

Section 4.

Figure 1: IFD architecture

The existing eID solutions may use various protocols; therefore, the IFD service specifies an

interface to implement and integrate different protocols. Protocols running at the IFD service

focus on secure channel establishment between the IFD and the connect device (e.g., smart

card). Those protocols are, for instance, password-based to perform a user authentication,

usually by a PIN, and ensure that only the legitimate user can use the ID card. The secure

channel should protect the data transmission between the IFD and the connected device

from being eavesdropped, in particular, if a contactless interface is used. The protocols are

executed by a particular IFD API call (cf. Section 0).

The IFD API and the Protocol API use the SCIO API (Smart Card Interface Input Output,

SCIO) to access the connected devices like card terminals, smart cards, and secure

elements. The SCIO API provides an interface for common smart card operations and

abstracts from the particular interfaces technology like PC/SC [1], NFC [4] [5] or SICCT [16].

In addition, the IFD includes a Common module which contains generic data structures and

provides convenience functions.

Protocol API

IFD API

Common

SCIO API

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 9 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

3.1 IFD API

According to the requirements of the deliverable D31.1 the IFD API provides an interface

according to ISO/IEC 24727-4 [8] and TR-03112-6 [9]. We adopt the functions from TR-

03112-6 and added new function to provide the protocol functionality. The API is specified in

Section 4.

In addition, the IFD service should support different bindings. In particular, SOAP [14] and

PAOS [15] should be supported. As depicted in Figure 2, the IFD API will be implemented by

a particular programming language to provide a language-specific interface. Figure 2 shows

the Task 31.3 will provide a Java-based implementation of the IFD API. The interface can be

directly accessed by applications or bindings for message transport (e.g., between the client

and the server) like SOAP or PAOS. The integration of further bindings can be realised by

implementing the language-specific interface. It is recommended that the language-specific

interface is used by a Dispatcher (cf. WP 3.6) that encapsulates transport protocols like

SOAP or PAOS.

Figure 2: Bindings

3.2 Protocol API

The Protocol API provides an interface and data structures for protocols, which establish a

secure channel or perform user authentication between the IFD service and connected

devices. Those protocols are, for instance, password-based protocols to perform a user

authentication, usually by a PIN, and ensure that only the legitimate user can use the ID

card. The secure channel should protect the data transmission between the IFD and the

connected device (e.g., an ID card) from being eavesdropped, in particular, if a contactless

interface is used.

The protocols are selected by an identifier. Each protocol must have a unique identifier in the

form of an URI. The protocols are executed by an EstablishChannel call through the IFD

API (cf. Section 0).

For instance, the Password Authenticated Connections Establishment (PACE) [17] protocol

can be integrated into the IFD service to secure the connection between the IFD and the

IFD API

SOAP PAOS …

Language-specific Interface

Dispatcher

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 10 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

German identity card. Note that PACE in combination with the contactless card interface as

part of the security architecture of an eID card program is today only used in Germany. By

end of 2012 in Germany round 20 million new eID cards were issued.

3.3 SCIO API

The SCIO API (Smart Card Interface Input Output, SCIO) provides an interface for common

smart card operations like selecting files and transmitting data. In a Java-based

implementation of the IFD service the SCIO API will be mapped to the Java Smart Card I/O

API (JSR 268 [18]). Java Smart Card I/O defines a Java API for communication with smart

card using ISO/IEC 7816-4 [8] APDUs.

3.4 Platforms

This Section focuses on differences of technologies and configurations of mobile and

desktop devices and illustrates the IFD architecture for both environments. Desktop

computers are typically equipped with USB [3] interfaces and card terminals and smart cards

are addressed by PS/SC [1] or SICCT [16]. Whereby, mobile devices typically equipped with

NFC [4] [5] and may be USB [3]. Contactless smart cards, for instance, can be addressed

via a contactless card reader using PC/SC on a desktop and NFC on mobile devices. To

fulfil those different technologies on desktop and mobiles devices we provide two different

architectures for the IFD. Nevertheless, only the interface to access the particular interface

technology (e.g., PC/SC vs. NFC) differs on both platforms. Therefore, we only must adopt

that part of the IFD service and can keep the IFD API, Protocol API, and SCIO API remain

the same.

 Desktop Environment 3.4.1

Figure 3 illustrates the architecture of the IFD on desktop platforms usually running

Windows, Linux or Mac OS. The IFD service integrates the PC/SC interface and allows the

integration of further interfaces. The PC/SC interface allows accessing the majority of card

readers and smart cards. The implementation of the IFD service for desktop environments

will use the Java Smart Card I/O API (JSR 268 [18]) as the SCIO API.

Figure 3: IFD architecture on desktop platforms

Protocol API

IFD API

PC/SC

SCIO API

…

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 11 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

 Mobile Environment 3.4.2

In the mobile environments we focus on the integration of the Open Mobile API [6] as

illustrated in Figure 4. The implementation of the IFD service for desktop environments will

use the Java Smart Card I/O API (JSR 268 [18]) as the SCIO API and the Transport API (cf.

[6], Section 6) of the Open Mobile API. The Open Mobile API allows accessing the NFC

interface and CCID-based [19] card terminals via the “plugin terminal” functionality1.

Figure 4: IFD architecture on mobile platforms

1
 https://code.google.com/p/seek-for-android/wiki/AddonTerminal

Protocol API

IFD API

NFC CCID

Open Mobile API

SCIO API

…

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 12 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

Another solution for the mobile environment could be the integration of the Android NFC

API2 and a port of the PC/SC-lite3 library. Both can be extended to implement the Java

Smart Card I/O API as illustrated in Figure 5. To keep the architecture as simple as possible

we plan to access the NFC interface and external card readers via the Open Mobile API as

illustrated in Figure 4.

Figure 5: IFD architecture on mobile platforms using Android NFC and PC/SC API

Mobile devices are may equipped with a Trusted Execution Environment (TEE) [20], which

provides a secure area to process code, data, and resources. It supports, among other

things, securing the user interface, access control for resources, and execution of trusted

software. To make a TEE available for the FutureID client it should be integrated as an IFD

device. The strong similarity between TEE and smart cards regarding the use of APDUs for

data and command exchange should allow a convenient integration.

3.5 Proxy Support

Some devices may be equipped with multiple interfaces, for instance, USB and NFC. Hence,

smart cards can be accessed via an attached card terminal or directly via NFC. To support

multiple interfaces simultaneously an additional meta-layer must encapsulate different IFD

interfaces and must forward messages to the respective IFDs.

 Architecture 3.5.1

The IFD Proxy component will encapsulate interface-specific IFDs (in short Sub-IFDs) as

depicted in Figure 6. Both types of IFDs, the IFD Proxy and the Sub-IFDs, will provide the

API as specified in Section 4. For external components there will be no difference between a

Sub-IFD and the IFD Proxy. The functionality of the IFD Proxy will be provided in software.

2
 http://developer.android.com/guide/topics/connectivity/nfc/index.html

3
 http://pcsclite.alioth.debian.org

Protocol API

IFD API

Android NFC API

SCIO API

Android PC/SC

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 13 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

Figure 6: IFD Proxy

 Fundamentals 3.5.2

This Section gives a brief overview of component addressing through different handles to

provide the necessary background for the implementation details in the next Section 3.5.3.

These handles are used to address the different components. In particular, if multiple card

terminals or smart cards simultaneously used the handles guaranties that each devices can

be clearly address. The relationship between the components and the different handles are

illustrated in Figure 7. See also TR-03112-4 [21] (Page 14, Figure 2).

Applications address a Service Access Layer (SAL) by a ChannelHandle. An IFD is

initialized by the EstablishContext function that returns a ContextHandle which is used to

address the respective IFD in further API calls. Using the ListIFDs or Wait function a list of

available card terminal can be received. Each card terminal is addressed by an IFDName.

Using the Connect function (containing a ContextHandle, an IFDName, and a SlotIndex) a

connection to a smart card can be established. The smart card is then addressed by a

SlotHandle.

Figure 7: Component Addressing

IFD Proxy

IFD API

PC/SC SICCT Open Mobile API

IFD API IFD API IFD API

TEE

SAL SAL

IFD IFD

ChannelHandle

ContextHandle

Card terminal

Smart card

IFDName

SlotHandle

ContextHandle

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 14 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

 Implementation 3.5.3

As mentioned in Section 3.5.2 each card terminal, which is attached to an IFD, is addressed

by an IFDName. This is in general the name of the product, e.g., “MyCompany Card Reader

XYZ” and it is provided by the particular interface like PC/SC4. Such an IFDName might not

be unique; hence an additional parameter will be added to each Sub-IFD. The parameter

acts as a suffix for the IFDNames associated with the corresponding IFD. A PC/SC-based

IFD, for instance, with an attached card terminal named “MyCompany Card Reader XYZ”

and the suffix “PCSCIFD” should extend the IFDName to “MyCompany Card Reader

XYZ_PCSCIFD”. Each Sub-IFD must take care of that mapping.

The IFDName is only necessary for some IFD API functions (cf. Section A.2). If such a

function is called on the IFD Proxy the request must be forwarded to the corresponding Sub-

IFD. The IFD Proxy must determine the suffix of the IFDName used in the request and must

determine the respective IFD associated with that suffix.

The behaviour of the IFD Proxy concerning the different API functions is described in the

following:

FUNCTION ACTION

EstablishContext The IFD Proxy MUST call the EstablishContext function on each

underlying Sub-IFD. If at least one Sub-IFD responses without an error

the Proxy MUST return a positive EstablishContextResponse,

otherwise the Proxy MUST return an error.

ReleaseContext The IFD Proxy MUST call the function on each Sub-IFD. Errors

occurring on underlying IFDs SHOULD be ignored.

ListIFDs The IFD Proxy MUST call the ListIFDs function on all Sub-IFDs. The

IFDNames containing in the ListIFDsReponse from the Sub-IFDs

MUST be merged and returned as a list in a single

ListIFDsReponse. Errors occurring on underlying IFDs SHOULD be

ignored.

GetIFDCapabilities The IFD Proxy MUST determine the Sub-IFD based on the suffix used

in the IFDName and MUST call the function on the selected Sub-IFD.

The Proxy MUST forward the corresponding response. Errors

occurring on underlying IFDs SHOULD be ignored.

GetStatus See GetIFDCapabilities.

Wait If the Wait parameters contain the IFDStatus element the Sub-IFD

SHOULD be determined by the IFDName contained in the

IFDStatus. The response MUST be forwarded. If the IFDStatus is

not present the Wait function MUST be called on each Sub-IFD. After

4
 See javax.smartcardio.CardTerminal.getName() [18]

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 15 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

the first response from one Sub-IFD the Proxy MUST call the Cancel

function on all remaining Sub-IFDs.

Cancel See GetIFDCapabilities.

ControlIFD See GetIFDCapabilities.

Connect See GetIFDCapabilities. The SlotHandle contained in the

ConnectReponse SHOULD be stored to determine the matching

Sub-IFD in further API calls.

Disconnect See BeginTransaction. The stored SlotHandle SHOULD be

deleted.

BeginTransaction The Sub-IFD SHOULD be determined using the stored SlotHandle

or the Proxy SHOULD call the function on each Sub-IFD and errors

with the ResultMinor value invalidSlotHandle MUST be

ignored. The result of the function call from the designated Sub-IFD

MUST be forwarded.

EndTransaction See BeginTransaction.

Transmit See BeginTransaction.

VerifyUser See BeginTransaction.

ModifyVerificationData See BeginTransaction.

Output See GetIFDCapabilities.

SignalEvent

EstablishChannel See BeginTransaction.

DestroyChannel See BeginTransaction.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 16 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

4. Interface Specification

This Section describes the different interfaces of the IFD service. Namely, it specifies the

IFD, Protocol, and SCIO API. The functionality of the IFD service can be access by other

applications thought the IFD API. It provides functions for card terminals, smart cards (or

secure elements), user interaction, and protocol establishment. The Protocol API specifies

an interface for protocols which should be integrated into the IFD service. The SCIO API

encapsulates common smart card / secure element functions like data transmission.

4.1 IFD API

The specification of the IFD API is based on ISO/IEC 24727-4 [8] and TR-03112-6 [9]. This

specification only considers adjustment and additions to TR-03112-6.

 Card terminal functions 4.1.1

The following functions are used as described in TR-03112-6. A detail description can be

found in TR-03112-6.

FUNCTION DESCRIPTION

EstablishContext Opens a session with the IFD service and returns a

ContextHandle to address the IFD instance in future.

ReleaseContext Terminates a session with the IFD service.

ListIFDs Returns a list of available card terminals.

GetIFDCapabilities Returns information of a card terminal.

GetStatus Determines the current status of the card terminal.

Wait Registers an event callback (e.g., new smart card is inserted).

Cancel Cancels a Wait call.

ControlIFD Sends (proprietary) commands to a connected card terminal.

 Card functions 4.1.2

The following functions are used as described in TR-03112-6. A detail description can be

found in TR-03112-6.

FUNCTION DESCRIPTION

Connect Establishes a connection to a card and returns a SlotHandle to

address the connection in future.

Disconnect Destroys a connection to a smart card.

BeginTransaction Starts a transaction through which several commands can be sent to

the card.

EndTransaction Ends a transaction.

Transmit Sends a set of APDUs.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 17 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

 User interaction functions 4.1.3

The following functions are used as described in TR-03112-6. A detail description can be

found in TR-03112-6.

FUNCTION DESCRIPTION

VerifyUser

Verifies the user by means of a PIN.

ModifyVerificationData

Modifies the verification data (i.e. changes a PIN).

Output Can be used to control the output units of a card terminal.

 IFD-Callback-Interface for card terminal events 4.1.4

The following functions are used as described in TR-03112-6. A detail description can be

found in TR-03112-6.

FUNCTION DESCRIPTION

SignalEvent Can be used to inform applications about card terminal events.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 18 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

 Protocol functions 4.1.5

This Section describes functions to support protocols in the IFD service. This functionality is

not yet part of ISO/IEC 24727-4 [8] or TR-03112-6 [9], but will may be subject of a

corresponding amendment. The XML Schemas are attached in Section A.1.

 EstablishChannel 4.1.5.1

The EstablishChannel function (cf. Section A.1.1) can be used to establish a secure

channel between the IFD service and a connected device. The connection is addressed by

the SlotHandle, which is returned by a successful execution of the Connect function. The

protocol used for channel establishment is selected through the protocol attribute in the

AuthenticationProtocolData element. This element includes protocol-specific data

defined by certain protocols (cf. Section 5).

REQUEST

Name EstablishChannel

Description The EstablishChannel function establishes a channel between the IFD service and

a connected device addressed by the given SlotHandle. The

AuthenticationProtocolData contains protocol-specific data.

Parameters

 Name SlotHandle

Description Addresses an established connection between the IFD service and a

device (cf. Connect [9]).

Name AuthenticationProtocolData

Description Protocol-specific data for channel establishment. The

AuthenticationProtocolData (cf. Section A.1.2) is defined as an

open type depending on a specific protocol performed to establish the

channel.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 19 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

RESPONSE

Name EstablishChannelReponse

Description The EstablishChannelReponse is returned in response to EstablishChannel

and includes status information and protocol-specific data.

Parameters

Name Result

Description Contains status information and if necessary additional error details.

Parameters

Name ResultMajor

Description The following values are defined for the ResultMajor

element:

 /resultmajor#ok

The operation executed successfully.

 /resultmajor#error

The operation could not be satisfied due to an

error. Details are indicated through the

ResultMinor and ResultMessage element.

Name ResultMinor

Description One of the following ResultMinor values SHOULD be

returned when the ResultMajor value is error.

 /resultminor/ifdl/common#invalidSlotHandle

 /resultminor/ifdl/common#cancellationByUser

 /resultminor/ifdl/common#timeoutError

 /resultminor/ifdl/common#unknownError

 /resultminor/ifdl/protocol#passwordSuspended

 /resultminor/ifdl/protocol#passwordBlocked

 /resultminor/ifdl/protocol#passwordError

 /resultminor/ifdl/protocol#passwordDeactivated

 /resultminor/ifdl/protocol#authenticationFailed

Name ResultMessage

Description A message that MAY contain more detailed information
about the error.

Name AuthenticationProtocolData

Description Protocol-specific data defined by the protocol.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 20 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

 DestroyChannel 4.1.5.2

The DestroyChannel function (cf. Section A.1.2) destroys a channel which was established

by an EstablishChannel execution. The established channel between the IFD service and

the device is addressed by the given Slothandle.

REQUEST

Name DestroyChannel

Description The DestroyChannel function destroys an established channel. The channel is

addressed by the SlotHandle.

Parameters

 Name SlotHandle

Description Addresses an established connection between the IFD service and a

device (cf. Connect [9]).

RESPONSE

Name DestroyChannelReponse

Description The DestroyChannelReponse is returned in response to DestroyChannel and

includes status information.

Parameters

Name Result

Description Contains status information and if necessary additional error details.

Parameters

Name ResultMajor

Description The following values are defined for the ResultMajor

element:

 /resultmajor#ok

The operation executed successfully.

 /resultmajor#error

The operation could not be satisfied due to an

error. Details are indicated through the

ResultMinor and ResultMessage element.

Name ResultMinor

Description One of the following ResultMinor values SHOULD be

returned when the ResultMajor value is error.

 /resultminor/ifdl/common#invalidSlotHandle

Name ResultMessage

Description A message which MAY contain more detailed information
about the error.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 21 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

4.2 Protocol API

This Section describes the Protocol API. Protocols that should be integrated into the IFD

service must implement that API.

 Protocol 4.2.1

The interface Protocol defines functions for IFD protocols which establish a channel. Each

protocol must implement the establish function to perform the protocol. In addition, the

interface specifies functions to apply and remove Secure Messaging from the APDU

according to ISO/IEC 7816-4.

Methods and Description

establish(EstablishChannel request, Dispatcher dispatcher, UserConsent

gui) : EstablishChannelResponse

Perform protocol and thereby set up a secure messaging channel.

applySM(byte[] commandAPDU) : byte[]

Filter function to perform secure messaging after the protocol has been established. Apply
secure messaging encryption to APDU.

removeSM(byte[] responseAPDU) : byte[]

Filter function to perform secure messaging after the protocol has been established.
Remove secure messaging encryption from APDU.

 ProtocolFactory 4.2.2

Each protocol must implement the ProtocolFactory to create a protocol instance for a

connection. The getProtocol() function must return a unique identifier that represents the

respective protocol.

Methods and Description

createInstance() : Protocol

Create an instance of the protocol.

getProtocol() : String

Returns the URI of the protocol.

4.3 SCIO API

The IFD service uses the Java Smart Card I/O as the SCIO API. Details can be found in the

JSR 256 [18].

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 22 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

5. Protocols

This section focus on protocols running at the IFD service to establish a secure channel

between the IFD and the connect device. Those protocols are, for instance, password-based

to perform a user authentication, usually by a PIN, and ensure that only the legitimate user

can use the ID card. The secure channel should protect the data transmission between the

IFD and the connected device (e.g., an ID card) from being eavesdropped, in particular, if a

contactless interface is used.

This Section contains protocol-specific AuthenticationProtocolData used in the

messages EstablishChannel and EstablishChannelReponse (cf. Section 0).

5.1 Password Authenticated Connections Establishment (PACE)

The PACE [17] protocol is used in the security architecture of the German Identity Card. It

performs a user authentication based on a PIN and establishes a secure channel between

the IFD and the ID card to protect the contactless interface. This Section describes the

PACE-specific AuthenticationProtocolData. The XML Schemas are listed in Section

A.1.4 and A.1.5. See TR-03110 [17] for detailed information about the protocol.

REQUEST

Name PACEInputType

Description Used as AuthenticationProtocolData in the EstablishChannel to establish

the PACE protocol.

Parameters

Name PINID

Description Specifies the type of the PIN (MRZ, PIN, PUK, and CAN).

Name PIN

Description Contains the PIN (or MRZ, PUK, CAN respectively).

Name CHAT

Description Contains the CHAT (Certificate Holder Authorization Template).

Name CertificateDescription

Description Contains the description of the terminal certificate.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 23 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

RESPONSE

Name PACEOutputType

Description Used as AuthenticationProtocolData in the EstablishChannelResponse.

Parameters

Name RetryCounter

Description Contains the retry counter of the PIN, i.e., number of remaining attempts.

Name EFCardAccess

Description Contains the file content of the file EF.CardAccess.

Name CARcurr

Description Contains the current CAR (Certificate Authority Reference).

Name CARprev

Description Contains the previous CAR (Certificate Authority Reference).

Name IDPICC

Description Contains the chip identifier.

Card Terminal with keypad

The PIN element of the PACEInputType MUST be empty to indicate the usage of the card

terminal’s keypad. Note that the capabilities of the card reader can be obtained by calling the

GetIFDCapabilities function.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 24 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

6. Limitations

The integration of the Open Mobile API in the mobile environment causes some limitations

which are described in this Section. The limitations result from unsupported functionality by

the API. These limitations do not occur on the desktop environment using PC/SC or SICCT.

6.1 GetIFDCapabilities

The Open Mobile API does not support the functionality of getting information about connect

devices, for instance, if a card terminal is equipped with a display or keypad. Therefore, the

GetIFDCapabilities will not provide the intended functionality.

Information about the functionality of connected devices may be derived from the IFDName

received from the ListIFDs function. But is approach should be used with caution.

6.2 BeginTransaction / EndTransaction

The Open Mobile API does not support establishing a transaction channel as indented by

the BeginTransaction and EndTransaction function. Therefore, transactions cannot be

used.

6.3 Transmit

The Open Mobile API does not support “channel management” APDUs. The restrictions on

the set of commands that can be sent are

 MANAGE_CHANNEL commands are not allowed,

 SELECT by DF Name (P1=04) are not allowed, and

 CLA bytes with channel numbers are de-masked.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 25 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

7. Documentation

This Section provides a brief list of references for further information about the technologies

used in the IFD service.

7.1 IFD API

The IFD API provides a common interface for communication to various devices like smart

cards and secure elements. Further details can be found in ISO/IEC 24727-4 [8] and TR-

03112-6 [9].

7.2 Open Mobile API

The Open Mobile API is an API that allows applications on mobile devices to access various

kinds of secure elements in a standardized way. Details can be found in the SIMalliance

specification [6].

7.3 PC/SC

Personal Computer/Smart Card (PC/SC) defines a common interface to access Integrated

Circuit Cards (ICC) from within different computing environments. Details can be found in the

PC/SC Workgroup Specifications [1].

7.4 SICCT

Secure Interoperable Chip Card Terminal (SICCT) defines a generic concept for application-

independent card terminals which is based on established card terminal and ICC standards

including ISO/IEC 7816. Details can be found in the SICCT specification [16].

7.5 Java Smart Card I/O

Java Smart Card I/O defines a Java API for communication with smart cards according

ISO/IEC 7816-4 [8] APDUs. Details can be found in the JSR 268 [18].

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 26 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

8. Conclusion

The IFD service provides an interface for communication to arbitrary devices like smart

cards and secure elements. Applications can access such devices without considering the

particular interface technology.

The IFD service has a sophisticated architecture that allows easily adaption of different

technologies and platforms. The protocol architecture allows simply integrating additional

protocols and further interface technologies are supported through the proxy functionality.

The IFD includes a Common module which contains generic data structures and provides

convenience functions. The Protocol API provides an interface for protocols to establish a

channel between the IFD and connected devices and the SCIO API provides an interface for

common smart card operations.

The IFD API is based on the existing standards ISO/IEC 24727-4 and TR-03112-6 and

provides extensions to support protocols for channel establishment. This facilitates an easy

introduction and wide adaption of the interface specification.

The integration of the Open Mobile API causes some limitations. Therefore, not all functions

of the API can be completely implemented. With regard to the mobile environment and

possible use case that seems to be negligible. Note the described alternatives in the

corresponding Sections.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 27 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

9. Bibliography

[1] PC/SC Workgroup, PC/SC Workgroup Specifications, Version 2.01.11, Part 1 - 10,

2012.

[2] Open Handset Alliance, Android, http://www.android.com.

[3] USB Implementers Forum, Universal Serial Bus Revision 3.0 Specification,

http://www.usb.org/developers/docs/, 2011.

[4] ISO/IEC, Information technology - Telecommunications and information exchange

between systems - Near Field Communication - Interface and Protocol (NFCIP-1),

International Standard, ISO/IEC 18092, 2003.

[5] ISO/IEC, Information technology - Telecommunications and information exchange

between systems - Near Field Communication Interface and Protocol -2 (NFCIP-2),

International Standard, ISO/IEC 21481, 2005.

[6] SIMalliance, Open Mobile API specification, Version 2.03, 2012.

[7] ISO/IEC, Identification cards - Integrated circuit cards, International Standard, ISO/IEC

7816, Part 1 - 13,15, 2004 - 2011.

[8] ISO/IEC, Identification cards - Integrated circuit card programming interfaces - Part 4:

Application programming interface (API) administration, International Standard, ISO/IEC

24727-4, 2008.

[9] Bundesamt für Sicherheit in der Informationstechnik (BSI), eCard-API-Framework - IFD-

Interface, Version 1.1.2, Part 6, 2012.

[10] FutureID, D31.1 - Requirements report, 2013.

[11] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, RFC 2119,

1997.

[12] Trusted Computing Group, TCG Mobile Trusted Module Specification, Version 1.0,

2010.

[13] Trusted Computing Group, TPM Main, Version 1.2, Part 1 - 3, 2011.

[14] B. Don, E. David, K. Gopal, L. Andrew and M. Noah, Simple Object Access Protocol

(SOAP) 1.1, 2000.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 28 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

[15] Liberty Alliance Project, Liberty Reverse HTTP Bindin for SOAP Specification, Version

2.0, http://www.projectliberty.org/liberty/content/download/909/6303/file/liberty-paos-

v2.0.pdf.

[16] TeleTrusT Deutschland e.V., SICCT - Secure Interoperable ChipCard Terminal, Version

1.6, 2009.

[17] Bundesamt für Sicherheit in der Informationstechnik (BSI), Advanced Security

Mechanisms for Machine Readable Travel Documents, Technical Guideline TR-03110,

Version 2.10, Part 1 - 3,

https://www.bsi.bund.de/ContentBSI/EN/Publications/Techguidelines/TR03110/BSITR0

3110.html, 2012.

[18] Oracle Corporation, Java Smart Card I/O API, JSR 268,

http://jcp.org/en/jsr/detail?id=268, 2006.

[19] USB Device Working Group, CCID - Specification for Integrated Circuit(s) Cards

Interface Devices, Revision 1.1,

http://www.usb.org/developers/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf,

2005.

[20] GlobalPlatform, Trusted Execution Environment (TEE) Specifications, Version 1.0,

http://www.globalplatform.org/specificationsdevice.asp, 2011 - 2012.

[21] Bundesamt für Sicherheit in der Informationstechnik (BSI), eCard-API-Framework - ISO

24727-3-Interface, Technical Guideline TR-03112-4, Version 1.1.2, 2012.

[22] Bundesamt für Sicherheit in der Informationstechnik (BSI), eCard-API-Framework,

Technical Guideline TR-03112, Part 1 - 7, Version 1.1.2,

https://www.bsi.bund.de/ContentBSI/Publikationen/TechnischeRichtlinien/tr03112/index

_htm.html.

[23] A. Robert and K. John, Liberty Reverse HTTP Binding for SOAP Specification, Liberty

Alliance Specification, Version 2.0, 2006.

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 29 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

A. Appendix

A.1 XML Definitions

A.1.1 EstablishChannel

A.1.2 DestroyChannel

<element name="EstablishChannel">

 <complexType>

 <complexContent>

 <extension base="iso:RequestType">

 <sequence>

 <element name="SlotHandle" type="iso:SlotHandleType" />

 <element name="AuthenticationProtocolData" type="iso:DIDAuthenticationDataType" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

</element>

<element name="EstablishChannelResponse">

 <complexType>

 <complexContent>

 <extension base="iso:ResponseType">

 <sequence>

 <element name="AuthenticationProtocolData" maxOccurs="1" minOccurs="0"

 type="iso:DIDAuthenticationDataType" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

</element>

<element name="DestroyChannel">

 <complexType>

 <complexContent>

 <extension base="iso:RequestType">

 <sequence>

 <element name="SlotHandle" type="iso:SlotHandleType" maxOccurs="1" minOccurs="1" />

 </sequence>

 </extension>

 </complexContent>

 </complexType>

</element>

<element name="DestroyChannelResponse">

 <complexType>

 <complexContent>

 <extension base="iso:ResponseType">

 <sequence />

 </extension>

 </complexContent>

 </complexType>

</element>

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 30 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

A.1.3 DIDAuthenticationDataType

See TR-03112 [22] (file ISO24727-3.xsd).

A.1.4 PACEInputType

A.1.5 PACEOutputType

<complexType name="DIDAuthenticationDataType">

 <complexContent>

 <extension base="anyType">

 <attribute name="Protocol" type="anyURI" use="required" />

 </extension>

 </complexContent>

</complexType>

<complexType name="PACEInputType">

 <complexContent>

 <restriction base="iso:DIDAuthenticationDataType">

 <sequence>

 <element name="PinID" type="iso:ByteType" />

 <element name="CHAT" type="hexBinary" maxOccurs="1" minOccurs="0"/>

 <element name="PIN" type="string" maxOccurs="1" minOccurs="0" />

 <element name="CertificateDescription" type="hexBinary" maxOccurs="1" minOccurs="0" />

 </sequence>

 </restriction>

 </complexContent>

</complexType>

<complexType name="PACEOutputType">

 <complexContent>

 <restriction base="iso:DIDAuthenticationDataType">

 <sequence>

 <element name="RetryCounter" type="nonNegativeInteger" maxOccurs="1" minOccurs="0" />

 <element name="EFCardAccess" type="hexBinary" maxOccurs="1" minOccurs="0" />

 <element name="CARcurr" type="hexBinary" maxOccurs="1" minOccurs="0" />

 <element name="CARprev" type="hexBinary" maxOccurs="1" minOccurs="0" />

 <element name="IDPICC" type="hexBinary" maxOccurs="1" minOccurs="0" />

 </sequence>

 </restriction>

 </complexContent>

</complexType>

Shaping the Future of Electronic Identity
WP31 - Interface Device Service

Document name: Interface and Module Specification and Documentation Page: 31 of 31

Reference: D31.2 Dissemination: PU Version: 1.0 Status: Final

A.2 Communication Handles

The following Table shows the elements that are present in the different API functions.

 ChannelHandle ContextHandle IFDName Slot SlotHandle

EstablishContext ■ □ □ □ □

ReleaseContext □ ■ □ □ □

ListIFDs □ ■ □ □ □

GetIFDCapabilities □ ■ ■ □ □

GetStatus □ ■ ■ □ □

Wait □ ■ *■* □ □

Cancel □ ■ ■ □ □

ControlIFD □ ■ ■ □ □

Connect □ ■ ■ ■ □

Disconnect □ □ □ □ ■

BeginTransaction □ □ □ □ ■

EndTransaction □ □ □ □ ■

Transmit □ □ □ □ ■

VerifyUser □ □ □ □ ■

ModifyVerificationData □ □ □ □ ■

Output □ ■ ■ □ □

SignalEvent □ □ □ □ □

EstablishChannel □ □ □ □ ■

DestroyChannel □ □ □ □ ■

* The IFDName may be available if the IFDStatus element is present.

